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Abstract 

I present an in-depth theoretical analysis of the optical impact of transverse index 

confinement on the lasing modes of microcavity surface emitting lasers. Using two differ- 

ent variational techniques—the weighted index method and the finite element method—I 

solve Maxwell's equations for several azimuthally symmetric laser designs to compute the 

relevant laser parameters: modal resonance, field profile, confinement factor, and threshold 

gain. Through my weighted index analysis, I discovered two new effects of transverse field 

confinement: a polarization dependent change in mirror reflectance with aperture radius, 

previously only noted in edge-emitting lasers, and a mode dependent blueshift. Comparing 

my blueshift predictions against measured results for devices operating at nominally 850 nm 

and 780 nm, I found excellent agreement between theory and experiment. For a sufficiently 

sharp gain spectrum, this blueshift may be used to achieve low threshold, single mode lasing 

by exploiting the dispersion in blueshift rates amongst the various transverse eigenmodes to 

spectrally select the single desired lasing mode. Through my finite element analysis, I ascer- 

tained the physical mechanisms responsible for diffraction in microcavity lasers. These are: 

the transverse confinement of the optical mode, the degree of tilt of the mode propagation 

vector away from normal to the mirror surfaces, and the density of parasitic modes in the 

spectral vicinity of the lasing mode. This knowledge is of vital importance for low threshold 

design analyses, since diffraction is the dominant loss source in this regime. Based on the 

success of the parasitic mode loss picture for describing diffraction in the stratified surface 

emitting laser geometry, I augmented my weighted index model, via a rigorous electromag- 

netic calculation of lasing-to-parasitic modes coupling, to compute diffractive loss and total 

threshold gain. Incorporating this new weighted index/parasitic mode calculation with a 

semiconductor bandstructure and gain model, I computed spontaneous emission rates for a 

low threshold laser using a new optical mode density model specifically designed to address 

the partial field confinement afforded by, for example, oxide apertures. Finally, the optical, 

gain, and emission results were combined to compute light verses current, threshold current, 

and spontaneous emission factors for the same low threshold device. 

xv 



Optical Physics of Microcavity Surface Emitting Lasers 

/.   Introduction 

1.1    Foreword 

The advances in semiconductor and optoelectronic technology over the last quarter 

century have opened the door for the theoretical researcher to probe concepts not only of 

purely scientific interest but of great practical application as well. This is perhaps best exem- 

plified by the archetypical semiconductor laser, whose understanding requires the mastery of 

several branches of physics and yet boasts wide sweeping application ranging from compact 

disc players, to environmental sensors, to aircraft avionics, etc. These lasers have established 

a growing strong-hold within the optical source genre due in a large part to their cost, size, 

and exceptional operating characteristics, many of which are unobtainable by their gas and 

solid state counterparts—at any cost. Indeed, as anyone who has worked with them can 

attest, the idea of a ND3+-YAG, ruby, or C02 laser operating with an efficiency of 50% 

off batteries and costing pennies on the dollar belongs in an Arthur C. Clarke novel. Yet 

semiconductor lasers have achieved all these feats and more. A prime example is amplitude 

modulation by direct modulation of the drive current, a feature ideally suiting these lasers 

for fiber-optic sources, the backbone of the communications industry. The prominence of 

these lasers is largely attributable to the advances in semiconductor growth and microfab- 

rication technology, permitting the researcher to control device construction literally down 

to the atomic level and to realize truly quantum mechanical structures—as Steven Wright 

quipped—"the dreams stuff are made of." Most notably, this technology facilitated the 

creation of heterojunctions and quantum wells, the optical sources within most lasers, and 

until then a purely theoretical entity of quantum mechanics. Despite the relative maturity 

of the semiconductor laser, the research activity has not slowed, maintaining a frenzied pace 

driven by the continual emergence of new applications and the demand for increased per- 

formance.  A large percentage of the work is focused on conquering new material systems 
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to achieve reliable lasers at wavelengths outside of the well developed red-to-near-infrared 

range. The elusive blue laser, the last leg of the triad required for high-brightness, flat-panel 

displays, and the mid-infrared intraband quantum cascade laser, which uses the well estab- 

lished GaAs/AlGaAs material system, are excellent examples of this type of work. Although 

this research is exceptionally significant in the material science and quantum mechanics dis- 

ciplines, optically these lasers differ very little from their predecessors. This is not the case 

though with vertical cavity surface emitting lasers, or VCSELs, another highly active area 

of laser research, and the foundation of this thesis. 

The VCSEL is a relatively recent spin-off of the more traditional edge-emitting laser, 

whose primary differences—cavity orientation, size, and design—are optical in nature; a typ- 

ical VCSEL and edge emitter are illustrated in Figure 1.1. As the name implies, the VCSEL 

cavity is normal to the growth direction. VCSEL mirrors are either monolithically grown 

semiconductor or post-growth deposited dielectric distributed Bragg reflectors (DBRs): al- 

ternating quarter-wave layers of high and low index of refraction materials. A drawback of 

the vertical cavity is a very short gain region, often necessitating extremely thick DBRs of 

80 layers or more to achieve the greater than 99% reflection required for lasing. On the 

other hand, however, the typical VCSEL cavity is only a few wavelengths long, roughly two 

orders of magnitude shorter than most in-plane lasers. An immediate result being the lasing 

threshold, which scales roughly with active volume, is also orders of magnitude smaller, un- 

fortunately at the expense of the ability to generate high output powers. Additionally due to 

the short cavity length, VCSELs only support a single longitudinal mode. The large spacing 

between spectrally sharp longitudinal modes—due to the high reflectance DBRs—makes the 

VCSEL cavity the optical analog of the quantum well, a quasi-two dimensional structure. 

This feature has been thoroughly investigated, focusing on the potential for cavity design to 

effect the quantum nature of light, enhancing or suppressing spontaneous emission to lower 

the lasing threshold beyond the active volume limit. From the results of analyses on the 

simple planar VCSEL came predictions that with further optical confinement, lower order 

quantum systems could be imitated and lower thresholds obtained. 

1-2 



Bottom DBR 

Etched Post 
VCSEL 

Top DBR Top Ring Contact 

Cavity & Gain Region 

Electrically Pumped 
Edge-Emitting Laser 

Bottom Contact 

Gain Region 

Top Stripe Contact 

■1-8   X 

Figure 1.1     Illustration of a simple etched post vertical cavity surface emitting laser and 
an edge-emitting laser. 
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The first embodiment of a three-dimensionally index confined vertical cavity laser 

came in the form of an etched post, with DBRs providing one dimension of confinement 

and the air-to-semiconductor interface providing the other two. Although it would seem 

this device would provide the closest replica of the classical "particle in a box", it was 

not practical. It suffered terribly from surface recombination electrical losses, as well as 

optical scattering losses, and was therefore quickly abandoned. Nonetheless, in its short life- 

span a great deal of analysis was performed on it, with the most noteworthy result being a 

prediction that in a true zero dimensional system the threshold could be made to completely 

disappear. The potential of this device is enormous; a zero threshold device would require 

zero bias power. This untapped potential served to motivate researchers both interested 

in the practical application of such a device as well as those intrigued by the exciting new 

physics embodied in them. The breakthrough came when the microelectronics group at 

the University of Texas (U.T.) found that by replacing proton implantation with native 

oxidation for current confinement, they achieved the additional benefit of index confinement 

of the optical field without the immense electrical losses associated with etching [31]. The 

idea caught on like wildfire and over the few short years since its inception, oxidation has 

essentially replaced implantation as the method of choice for carrier and field confinement. 

However, the oxide is not perfect. It clearly provides a transverse index step, but 

the total effect of the step is not well understood, as evidenced by the large variety of 

oxide designs throughout the research community. For example, two leading universities in 

VCSEL research, the University of California at Santa Barbara (U.C.S.B.) and the University 

of Texas, report optimized designs based on wholly different concepts of the oxide optical 

effect. Santa Barbara reports that thinner oxides placed further from the gain region at 

nodes of the field standing wave are superior, minimizing the diffraction loss of the lasing 

mode [30]. Texas reports just the opposite; thicker oxides placed near the gain region at 

antinodes are better, providing more transverse confinement/waveguiding to the mode [19]. 

Both groups have enjoyed success with their respective approaches, achieving extremely low 

thresholds [33]. Their results suggest that the primary effects of the oxide differ depending 

on the cavity and oxide aperture design.   These results may also be interpreted to mean 
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the use of oxides has not yet been optimized and the ultimate threshold limit has not yet 

been achieved. A further reduction in threshold must be preceded by a better understanding 

of the oxide effects. A complete model must explain these two seemingly opposing results. 

Once in hand, this "Grand Unified VCSEL Optical Theory" may be used to predict the ideal 

oxide aperture and VCSEL cavity design for achieving the ultimate limit in low threshold 

lasing. It is precisely this model which is the goal of this dissertation. 

1.2    Optical Problem 

The fact that the optical problem has persisted so long reflects the extreme difficulty 

in solving the differential equations governing the fields in VCSELs. The equations are 

themselves simple enough. They are, of course, Maxwell's equations, given in differential 

form (in MKS units) as 

—* 

(1.1) VxE = 
dB 
dt' 

VxH = 
3D     - 

V-D = 
PVI 

V -B = 0. 

Here the two source terms are the current density (Jj and the volume charge density (/>„). 

Assuming isotropic media, the electric (3) and magnetic (3) fluxes are related to the 

electric [Ej and magnetic (H) fields by the material parameters (fj,, e) and the constitutive 

relations 

D   =   e0erE, (1.2) 

B   =   [i0nrH; 

^0, fir, e0, and er are the free-space and relative permeability, and the free-space and relative 

permittivity, respectively. The relative permittivity is related to the more commonly used 
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index of refraction by 
_2 
if. C1-3) 

Absorptive loss and material gain result from a negative or positive imaginary part of er or 

7/. Since lasing fields are spectrally sharp—nearly delta functions in frequency—the fields 

may be approximated as harmonic, depending on time as exp (iut), where * = y/-i and u is 

the radial frequency. Furthermore, assuming non-magnetic material (/ir = 1), which is the 

case for all semiconductor laser materials, the Maxwell curl equations may be combined to 

derive the vector Helmholtz equation, 

VxVxl- w2n0e0erE = -iu/i0J. (1-4) 

The vector Helmholtz equation and the MKS Maxwell's equations serve as the foundation 

for all my optical laser analysis. The primary challenge in solving (1.4) results from the 

apertured VCSEL geometry. The geometry introduces two fundamental difficulties: (1) the 

relative permittivity, and therefore the vector Helmholtz equation, is not separable due to 

the aperture or etched post; (2) the planar Fabry-Perot cavity has very high Q. The non- 

separability is intrinsic to the apertured VCSEL design; without it there could be no index 

confinement1. Similarly, the high Q is vital for lasing to occur in the short VCSEL cavities. 

These two intrinsic VCSEL attributes conspire to greatly complicate optical modeling efforts. 

1.3   Semianalytic Calculations 

Since analytic calculations generally yield not only a specific solution to a given prob- 

lem, but insight into the physical underpinnings of the problem, they are often preferred 

over numerical techniques. Moreover, analytic calculations are as a rule much faster than 

numerical approaches, favoring them for iterative design work. Hence, the majority of the 

optical modeling efforts have involved an analytic or semianalytic representation of the fields. 

The most obvious approach is to actually solve the full vector Helmholtz equation in each 

region of constant index of refraction, coupling the solutions via the tangential field continu- 

i-phis is not strictly true, but does hold for all current VCSEL designs. This issue will be revisited later 
in Chapter V. 
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ity conditions [12]. In this approach the field is represented by an infinite weighted sum of 

eigenfunctions (for example, trigonometric or Bessel functions) for each region, the weight- 

ing determined by mode matching to adjacent regions. But this technique works well only 

when the refractive index profile separates in some preferred coordinate system, reducing the 

infinite expansions to a single term. If, as in realistic VCSEL structures, the refractive index 

profile does not separate in any coordinate system, then simple single-term special-function 

solutions to the governing partial differential equations do not represent exact solutions for 

the modes and analytic methods become quite cumbersome. Despite this difficulty, most 

previous analytic calculations have introduced, at some point in the treatment, a single 

product term to describe a particular electromagnetic field component [21,26]. It is vital to 

realize that this is equivalent to assuming the underlying differential equation separates. 

Since separable descriptions facilitate closed-form expressions, rapid calculation, and 

comparison with well-understood "textbook" problems, there is considerable motivation to 

improve and justify them. Therefore, in Chapter II, I generalize the weighted index method 

(WIM)—a separable approximation—to compute cavity modes in cylindrically-symmetric 

dielectric VCSEL structures. I also show (in Appendix A), using the calculus of variations, 

that this technique provides the best separable solution to the scalar Helmholtz equation. In 

Chapter III, I apply the WIM to both oxide-apertured and etched-post VCSEL designs to 

calculate the spatial profile, optical confinement factor, resonant frequency, and mirror and 

absorption losses of the fundamental and higher-order lasing modes. Furthermore, I compare 

the WIM lasing mode resonance predictions to measurement for two different apertured 

device designs, validating the WIM results. Ignoring diffraction effects, I show in Appendix 

B that the threshold conditions based on the WIM optical losses are a generalization of the 

classical Fabry-Perot round-trip amplitude and phase conditions [65]. 

1.4    Numerical Solutions 

For aperture sizes approaching the field wavelength, diffraction becomes the dominant 

loss mechanism, rendering the original WIM incomplete. In this realm, any threshold pre- 

diction based solely on the WIM losses will be inaccurate—the smaller the aperture, the 

1-7 



less accurate the results. I would prefer to augment the WIM to incorporate diffraction and 

make it a complete optical model. But, before this can be accomplished it is crucial to un- 

derstand the true physical mechanisms which determine the diffraction in VCSELs. Ideally, 

this could be done experimentally. Several devices of different oxide aperture radii could be 

fabricated and the threshold current measured. The threshold current, however, strongly 

depends on the electrical parasitics—surface recombination and leakage current—both of 

which vary significantly for small aperture VCSELs. Hence, it is extremely difficult to ferret 

out optical loss information from threshold current measurements, necessitating the use of 

modeling to understand the purely optical effects of oxide confinement. 

Volumetric numerical methods, although computationally intensive, are ideally suited 

for rigorous analysis of non-separable partial differential equations (PDEs) over a closed do- 

main. These techniques approximate the true answer by a numerical one, formed by discretiz- 

ing either the PDE—by replacing the derivatives with finite differences—or the solution—by 

expanding the function over a weighted basis set. These methods are quasi-exact, in that 

their accuracy increases with the number of unknowns and becomes exact in the infinite 

limit. To date, only one numerical method has been applied to the VCSEL optical prob- 

lem. G.R. Hadley [27] estimated the diffractive losses due to oxide apertures using a finite 

difference eigensolver. But his solution was limited in two primary respects: (1) the finite 

difference approach only works on a Cartesian grid, and (2) it may only be used to solve for 

scalar fields. His model can not handle tapered oxides, touted by Santa Barbara and Sandia 

National Laboratories as the optimal oxide design. Furthermore, for VCSEL designs with 

oxides in or near the cavity—such as the University of Texas's design—the vector nature of 

the fields may be important. To extend his results, in Chapter IV, I derive a new vector finite 

element method (FEM). The FEM explicitly solves for all three electric field vector compo- 

nents in azimuthally symmetric VCSELs2. The method is based on a variational solution 

of the full vector Helmholtz equation. Unlike finite difference approaches, the FEM is not 

limited to a Cartesian grid and can easily incorporate any azimuthally symmetric dielectric 

geometry, including complex loss. In this method, the Helmholtz equation boundary value 

2I present the vector finite element functions in Appendix C 
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problem is transformed to a large, sparse, non-Hermitian, generalized eigenvalue problem. 

For each cavity mode the eigenvalues correspond to the complex radial frequency (a;) and 

the eigenvectors are the basis expansion coefficients determining the fields. Since the method 

may only be applied on a closed domain, in Appendix D, I derive a new artificial absorbing 

layer designed to mimic the unbounded nature of the fields. I conclude Chapter IV by ap- 

plying the FEM to a novel oxide apertured, oxide DBR VCSEL, reported to be the smallest 

working (photopumped) device ever built [67]. From the eigenvalue and eigenvector, I derive 

all the pertinent mode data: resonant wavelength, confinement factor, field distribution, 

and total threshold gain including diffractive loss. This analysis should be the most accurate 

field calculation performed to date. From these results, I infer the fundamental mechanisms 

governing VCSEL diffraction. 

1.5    Parasitic Modes 

Perhaps the most referenced calculation addressing diffraction in VCSELs is a model 

based on an "unfolded cavity" [29]. In this model, a Gaussian mode, whose shape is deter- 

mined by the effective "fiber optic" waveguide [26], is propagated through a series of oxide 

apertures. The energy lost to diffraction in one cavity round-trip is calculated and then 

extrapolated, based on mirror losses (e.g., emitted light), to estimate the threshold gain. 

This model is popular for several reasons: (1) it yields an intuitive semianalytic field so- 

lution, the VCSEL analog of the standard laser solution, (2) it runs quickly and does not 

demand the computational horsepower of numerical techniques, and most importantly (3) 

it qualitatively predicts many of the experimental observations. Based on this model, Santa 

Barbara derived their VCSEL design: thin oxides placed at nodes of the field standing wave 

one or two wavelengths from the cavity. However, the current (repeatable) threshold record 

belongs to the Texas group, whose design, as discussed above, is diametrically opposed to 

Santa Barbara's. The problem with the unfolded cavity model is it fails to incorporate 

the fact that the VCSEL field diffracts into a dielectric layered structure, similar to a slab 

waveguide, and not into free space [19]. 
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D.G. Deppe (U.T.) has proposed a different picture of VCSEL diffraction, considering 

it as energy loss to "parasitic modes." These are slab waveguide modes, nearly resonant 

with the lasing mode, propagating in the transverse direction3. Based on this picture, his 

group performed qualitative estimates of diffractive loss in various cavity structures [20]. 

Their interpretation of the loss mechanisms support my conclusions from the FEM analysis, 

suggesting the validity of the parasitic mode concept. Most remarkably, both calculations 

(Texas's and my FEM) consistently explain the seemingly opposite U.C.S.B. and U.T. op- 

timized designs. Following the Texas success, in Chapter V, I incorporate parasitic mode 

loss into the WIM to complete the optical model. Since the WIM is primarily intended as 

a fast approximate technique, I improve the efficiency of the method—without sacrificing 

significant accuracy—by adopting the linear polarization (or paraxial) approximation. This 

allows me to treat the lasing mode (but not the parasitic modes) as a scalar field, greatly sim- 

plifying the field representation and cutting run times by roughly a factor of two. I validate 

this approximation through comparisons with previously obtained vector WIM results. 

1.6    Complete Laser Modeling 

The principal threshold metric is the spontaneous emission factor (ß), describing the 

percentage of photons (spontaneously) emitted into the lasing (or any other) mode. For 

traditional lasers with cavity dimensions much larger than the optical wavelength, this can 

be accurately estimated using the three-dimensional density of optical modes—proportional 

to uj2. In VCSELs, the short, high Q cavity quantizes the propagation constant in the lon- 

gitudinal direction and the appropriate density of modes is two-dimensional—proportional 

to UJ. Furthermore, the quantum well emission becomes anisotropic in the cavity, increasing 

spontaneous emission in some directions at the expense of others [8,10,18]. The combina- 

tion of these two phenomena result in lasing mode /?'s much larger than traditional lasers. 

Extrapolating this effect to lower dimensional systems (i.e., more degrees of confinement), 

the density of modes may be further reduced and larger /3's obtained. In the theoretical, 

zero-dimensional limit—where all cavity dimensions are on the order of the wavelength—the 

3More precisely, the parasitic modes propagate at least in the transverse direction; they may also propa- 
gate in the longitudinal direction as well. 
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density of modes becomes a series of delta functions. If these modes are spaced sufficiently 

apart, only one mode may interact with the gain media. In this case, all the spontaneous 

emission will be channeled into this mode, ß will go to 1/2 (due to polarization degeneracy), 

and the threshold will disappear [4,5]. In realistic VCSELs this limit (currently) can't be 

reached. Parasitic optical and electrical losses destroy any quantum optical benefits well 

before the theoretical minimum cavity size. However, as evidenced by record low thresholds, 

oxide apertured devices must receive some quantum optical benefits over planar devices. 

Since the oxide confinement is incomplete, one could envision the optical density of modes 

as a set of discrete cavity modes, similar to the zero-dimensional case, superimposed on the 

background two-dimensional density of modes. In Chapter VI, I employ this new approach 

using my WIM optical modes to estimate the spontaneous emission factor for the University 

of Texas's low threshold VCSEL. Integrating these results with J.P. Loehr's gain model [42], 

the photon and carrier related rate equations are solved to estimate the threshold current 

and the light-vs-current characteristics—the ultimate goal of laser modeling. 
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77.   Vector Weighted Index Method 

In this chapter, I generalize the weighted index method (WIM)—a separable approximation 

to the Helmholtz equation—to compute cavity modes in cylindrically-symmetric dielectric 

VCSEL structures [50,51]. I calculate the electric and magnetic vector potentials and use 

these to compute the resulting fields. Using the calculus of variations in Appendix A, I show 

that this technique provides the best separable solution to the scalar Helmholtz equation. The 

method allows me to approximate the spatial profile, optical confinement factor, resonant 

frequency, and mirror and absorption losses of cavity modes in both oxide-apertured and 

etched-post VCSELs. The method explicitly considers complex media, allowing me to include 

free carrier losses. A central flaw of the technique, however, is an exclusion of diffraction, the 

dominant loss mechanism in recent low threshold designs. I remedy this later in Chapter V, 

by perturbatively including these losses in the general WIM formalism as presented below. 

2.1    Vector Field Equations 

I want to find the electric (E\ and magnetic (S\ field profiles, the resonant wave- 

length (A), and the mirror and absorption losses (a(niSnOT) + ^(absorption)) for each cavity mode 

in azimuthally-symmetric VCSEL structures. For this I must solve a vector-wave equation 

subject to appropriate boundary conditions at each interface. Because there are several 

equivalent electromagnetic descriptions of any system, I can write wave equations for the 

electric and magnetic fields, scalar potentials, or vector potentials. The most powerful and 

convenient method for this problem is to solve for the magnetic I A) and electric IF) vec- 

tor potentials and use them to compute the fields. The steady-state, time-harmonic vector 

potentials A and F satisfy the three-dimensional vector Helmholtz equation (in MKS units) 

h72 + ^er(p,z)\ 
2    /      ^   j   A(p,<f>,z) 

F(p,<f>,z) 
>=0. (2.1) 
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Here Ä and F depend on time as eiwt, u = 2nc/\, and I have assumed a cylindrically- 

symmetric, complex dielectric function er. Note that 

y/e^ = T) = n + in, (2.2) 

where r] is the (complex) refractive index; material gain is incorporated by taking K positive 

in the active region. I assume pr = 1 in all regions. 

For azimuthally symmetric structures, the vector potentials are separable in <£, de- 

pending on it as e"71^. Furthermore, expressing the potentials in cylindrical coordinates, the 

z components obey a scalar Helmholtz equation, 

f d2       Id       d2       fu2    ,      .      m2\\ 
w+-Pd-p+d?+{^M--p2-)i 

d2   .  1 d   .   d2   .  fu2    ,     ,     m2\\  I   Az(p,z) 

Fz(P,z) 
> = 0. (2.3) 

To generate transverse magnetic (to z) (TM) modes I must solve for Az, while to generate 

transverse electric (TM) modes I must solve for Fz [28]. Since an arbitrary mode can be 

represented as a superposition of TE and TM modes, I need only solve for the two unknown 

scalar functions Az and Fz, a dramatic simplification over solving (2.1) for all six vector 

components. Note that despite the fact that I may solve a scalar equation (2.3) to find 

modes, the vector nature of the solution remains—manifested in the boundary conditions. 

The power of the vector potential approach comes from the fact that I may generate all the 

vector field components by taking derivatives of the z components of the vector potentials, 

therefore requiring no a-priori knowledge of the p or z dependence. The fields themselves 

are related to the vector potentials by [36] 

E   = ^V x V x (zAz) - V x (zFz), (2.4) 
OJSoSr 

H   =   V x (zAz) —V x V x (zFz), (2.5) 
up0 
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or, more explicitly, 

Ep(p,z)   = i—^-A,(p1z)-~F,(Plz)1 (2.6) 

E^z)   = i—^-Az(p,z) + -^Fz(p,z), (2.7) 
^v      ' üje0erpd(f)Oz op 

Ez(p,z)   =    \^ + -^ 2>MP,*), (2-8) ue0er I dp2     pop      pl ) 

Hp(p,z)   =   l±A,(p,z)-—1£rF,(p,z), (2.9) 

**M = -§-pM?,*)-^^r/M, (2.10) 

*.(*,) = _L{|1 + I »=£}*■,(,.,). (2.11) 
w/iol dP      P°P      P   ) 

In separable geometries, the two-dimensional, azimuthally-symmetric scalar Helmholtz 

equation (2.3) may be solved exactly by separation of variables, yielding the potential pro- 

files, resonant wavelength, and mirror and absorption losses for each cavity mode. Realistic 

VCSEL structures, however, are not separable, greatly complicating the solution of (2.3). 

An exact semianalytic solution could be obtained by expanding Az and Fz in terms of the 

general solutions in each region, then matching boundary conditions to determine the (infi- 

nite) set of expansion coefficients. In practice, this technique requires considerable care to 

implement, though it does have the advantage of incorporating non-separable behavior in 

the solutions [12]. Below, I present an alternative technique to generate the best separable 

approximations to (2.3). 

2.2    The Weighted Index Method 

Equation (2.3) represents two uncoupled partial differential equations—one each for Az 

and Fz—which are quite difficult to solve. For separable geometries, I can exactly replace 

each equation in (2.3) with two independent ordinary differential equations, and these can 

be solved exactly. For non-separable geometries, I approximate the solutions to (2.3). In 

general, there are two possible approximation techniques. The most common approach is 

to maintain the exact equations (2.3) and construct an approximate function that "almost" 
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solves them. An alternative approach is to replace the exact equations (2.3) with approx- 

imate equations, and solve these approximate equation exactly. I take the latter approach, 

and approximate each equation in (2.3) with two coupled ordinary differential equations. I 

accomplish this by extending the weighted index method (WIM)—which was first developed 

to calculate waveguide modes in horizontal-cavity ridge-waveguide lasers [39,61]—to address 

the eigenmodes of cylindrical cavities. This technique has the advantage of giving the best 

separable solution to (2.3) in the variational sense, and allows me to estimate the field profile, 

optical confinement factor, resonant wavelength, and mirror and absorption losses for each 

cavity mode. Below I derive the WIM equations; in Appendix A, I prove that their solution 

yields the best separable approximation to (2.3). 

Proceeding as if separable solutions to (2.3) exist, I take 

Az(p,z) = P(p)Q(z), 

(2.12) 

Fz(p,z) = R(p)S(z). 

Substituting either of these into (2.3) gives 

<"(p)t(*) + -p('(p)&) + COOa*) + (;j*r(p, z) - y} C(pj«*) = 0, (2.13) 

where C, = P or R and £ = Q or S. For each potential in (2.12), I can separate the 

resulting equation (2.13) by integrating it against (*(p) or C(z)- This procedure yields the 

axial equation 

e(z) + (ßa
eff(z))2ttz) = V, (2-14) 

and the radial equation 

1 r „     m21 
C(/>) = 0, (2.15) C'(P) + k\p) + (KffiP)) -'jr 
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for each potential. These axial and radial equations are coupled by the weighted axial and 

radial propagation constants, given respectively by 

«//(*)) = T7T7~\ '     l     ' faffK'JJ   =— (C|C) 

and 
IV,   ,   rt> - (^/^)((\'r{p,z)\() + U\(") ,o 17) 
(K„(P)) ?€Te> ' (   ' 

Here ( | ) denotes an inner-product over z or p, respectively defined by 

/oo 

A*(z)B(z)dz, (2.18) 
•oo 

and 
/•oo 

(A(p)\B(p)}= /    A*(p)B(p)pdp. (2.19) 
Jo 

Since the weighted propagation constants depend on whether I solve for Az or Fz, I have 

introduced an additional superscript a = TE or TM to distinguish between TE modes 

resulting from Fz (involving averages over ( = R and £ = S) and TM modes resulting from 

Az (involving averages over ( = P and £ = Q). Coupling occurs only between the radial and 

axial equations for a given vector potential Az or Fz: the two potentials remain uncoupled 

in (2.14) and (2.15).  But Az and Fz will be coupled later by boundary conditions when I 

solve for hybrid modes. 

2.3    Weighted Boundary Conditions and Solutions 

In this section I discuss the solutions of (2.14) and (2.15) in piecewise-constant re- 

fractive index profiles, paying particular attention to the interfacial boundary conditions. 

A sample structure is shown in Figure 2.1. Since I will work exclusively with piecewise- 

constant geometries, I simplify my notation by taking er(p, z) —* £r-.i,j, where i and j index 

the radial and axial regions, respectively. Thus I also have k^(p) —>■ kf and ß"fj{z) —>■ ß", 

and (2.14) and (2.15) reduce, respectively, to the one-dimensional Helmholtz equation and 

Bessel's equation. 
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£r:lj'+2 £r:2J+2 

£r:l,j+l £r:2,j+l 

£r:l,j £r:2,j 

£r:lj-l £r:2,?'-l 

Figure 2.1     Illustration of the piecewise constant permittivity notation for an axially sym- 
metric VCSEL. 
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To solve these equations subject to the refractive index profile er:ij of etched-post or 

oxide-apertured VCSEL structures, I must supplement (2.14) and (2.15) with an appropriate 

set of interface and endpoint boundary conditions. The interfacial boundary conditions 

are the usual continuity requirements on the normal and tangential components of various 

electromagnetic fields. Therefore I cannot directly enforce boundary conditions on P, Q, 

R, and 5, but must perform the intermediate step of computing the electric and magnetic 

fields via (2.6)-(2.11). Furthermore, since the underlying partial differential equations (2.3) 

do not separate, these boundary conditions cannot be satisfied at all points on the boundary 

surfaces—if they could, (2.3) would be separable. 

In preparation for generating approximate boundary conditions, I rewrite the weighted 

index formulas (2.16) and (2.17). By integrating (2.15) against (*{p) I have 

(C\C") + (C\p-1\C')-m2((\p-2\C) = -{C\(kr)2\C), (2.20) 

allowing me to express (2.16) as 

{f = (^)(ci^io-(ciw)'ic) s ^Ku) _ (r)2>       (2.21) 
\CIC) c 

where 
.. v-(ci^K) and ,n = l«\(k?r\a <^>-   (CK)    

and <*>-y   <CK)   ■ 

where 

,«    ._ UlenulQ    and   m_    /(*l(ff)aIO 

(2.22) 

Similarly, by integrating (2.14) against £*(z) I find 

(t\n = -<tm)2\t)> (2-23) 
allowing me to express (2.17) as 

W), = (^)KI^IO-(flwn) a^_r),        {2M) 

(2.25) 
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The compact expressions (2.21) and (2.24) allow me to compute weighted variables without 

using the derivatives of £ and £. 

I specialize these expressions to VCSEL lasing modes by truncating the inner product 

over z, replacing (2.18) with 

(A(z)\B(z)) = A*(z)B(z)dz, (2.26) 
" ^bottom 

where bottom and ztop denote the lower and upper VCSEL boundary planes. This truncation 

is necessary to force (2.24) to converge and reflects the assumption that most of the energy 

is contained inside the VCSEL cavity. In contrast, I force the radial wavefunctions to decay 

evanescently to zero—to find guided modes—and the inner product defined by (2.19) presents 

no difficulty. It is essential to realize that by forcing evanescent behavior in the radial 

direction, I explicitly prohibit diffraction from contributing to the solution. This unavoidable 

drawback is repaired perturbatively in Chapter V. 

I now present boundary conditions and solutions for the axial and radial equations 

(2.14) and (2.15). The unknowns in this formalism are, for each mode, the functions P(p), 

Q(z), i?(/?),and S(z), the resonant frequency w, and the mirror and absorption losses, 

a(mirror) + ^(absorption) = rtot47r«active/A. (2.27) 

Here Ttot is the total confinement factor and «active is the material gain in the active quantum 

well region required to offset the mirror and absorption losses. Note that the sum of the 

two losses equals the threshold modal gain which would be observed if diffraction were not 

present. In practice, I explicitly solve for «active, not a(™™) + «(absorption^ 

2.3.1 Axial Boundary Conditions and Solutions. I solve the axial equation (2.14) 

in piecewise constant geometries, such as in Figure 2.2. The general solutions of (2.14) are 
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given in each axial region [ZJ, Zj+i] by 

Qj(z) = a™e^™* + bjMe-^Mz, 

(2.28) 

Sj(z) = aJEe^ + bjEe-^r% 

where I explicitly denote both the TE and TM solutions for clarity. Using the iterative 

solution procedure described in Section 2.4, I compute ß]E and ß™ from (2.21); assume 

for now that they are known constants. These solutions must be joined at each interface Zj 

by matching the tangential electric and magnetic fields. Inserting (2.12) into (2.6)-(2.11), I 

compute these tangential field components as 

Ep(p,z)   = —P'(p)Q'(z) - -R(P)S(z), (2.29) 
u>e0er p 

Et(p,z)   =   -J^—P(p)Q'(z) + R'(p)S(z), (2.30) 
tx>eQerp 

Hp(p,z)   =   i™P(p)Q(z)-—R'(p)S'(z), (2.31) 
P ufi0 

777 

H^z)   =   -P'(p)Q(z) + R(p)S'(z). (2.32) 
ufi0p 

I consider, in turn, two distinct cases: m = 0 and m ^ 0. 

When m = 0 I can match boundary conditions with Q = 0 (pure TE modes) or 

5 = 0 (pure TM modes). For these modes, it is sufficient to force just two tangential 

field components to be continuous: demanding continuity of the other component gives a 

redundant condition. For TE modes I require E^ and Hp to be continuous; for TM modes 

I require Ep and Hj, to be continuous. As I will show below, for pure TE and TM modes 

the fields themselves, and not just the vector potentials, are separable. This makes it easy 

to generate weighted boundary conditions for these modes. 

For pure TE modes, I have 

E^z)   =   R'(p)S(z), (2.33) 

Hp(p,z)   =   -J-R'(p)S'(z). (2.34) 
Lüß0 
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     Zj+2 

      Zj+1 

(£r:C,j+l) 

    Zj 

(er:C,j) 

      Zj-1 

(£r:(,j-l) 

     Zj-2 

(£r:(j-2) 

     Zj-3 

Figure 2.2     Illustration of the weighted permittivity profile, and notation, for the WIM 
axial solution. 
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Since I assume fir = 1 in all regions, both E<f, and Hp depend on z only via S(z) and S'(z), 

respectively. Therefore I can force both tangential fields to be continuous by setting S(z) 

and S'(z) continuous across each interface. 

For pure TM modes, on the other hand, I have 

EP{p,z)   = 
U)£o€r 

Ht(p,z)   =  P\P)Q{Z) 

P'(P)Q'(Z): (2.35) 

(2.36) 

Again, I can make Hj, continuous by forcing Q(z) to be continuous across each interface. 

However, Ep depends on z through both Q'(z) and er. Since er(p,z) is not a separable 

function, I must weight the relative permittivity to obtain average boundary conditions 

holding for all p. Therefore I require Q'(z)/(eJI$) to be continuous at each interface, where 

(eJM .) has already been defined in each region by (2.25). (I could also have generated average 

boundary conditions using (j-), but this approach gave inferior results.) 

Inserting the functional forms (2.28) and applying the continuity conditions for either 

a = TE or a = TM modes, I relate aj, b°? to a*+1, bj+1 at each axial boundary z = Zj 

through the transfer matrices 

L] 
*? 

Ä? (2.37) 

where 

V TE _ 

V TM _ 

eW* z-w TE, 

ißjvr*, -ißfe-^r*. 

eW 

JPf 
/.TM   \ 
\sr:P,j> 

TM, 

iflTM 

pTE 

pTM 

e^+i'i 
„•/>TE ,. 

iffiie'W"   -i^e-Vft* 

-*m* 

(er:P,J + l) 

(2.38) 

•M :flTM,. -ißj+i       _iflTM 
,W" >e 

\er:P,j + l/ 
(2.39) 
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The composite transfer matrix [Ta] for the whole system is formed by cascading the indi- 

vidual transfer matrices, giving 

m = mr'mmrmm-'m ■ ■ ■ m.^m^ (2.40) 

Here N is the number of axial regions (including substrate and air) in the problem geometry. 

Thus I relate the unknown coefficients in the j = 1 region (substrate) to the coefficients in 

the j = N region (air) via 

(2.41) 

Since I am searching for axially-emitting (lasing) modes, I permit only outgoing radiation 

by setting 

6? = aa
N = 0. (2.42) 

Finally, substituting (2.42) into (2.41) I obtain the axial threshold condition1 

= 
i«      fa 
Hi   Hi 
fa      fa 
'21     '22 

*22\'^5 '''activeJ — «• (2.43) 

Setting the real and imaginary parts of t%2 equal to zero gives two independent equations 

that I solve to obtain the modal frequency (a; = 2irc/\), and the mirror and absorption 

losses (o;(mirror) + ^absorption) _ rtot47r«active/A) for pure TE and TM modes. The expansion 

coefficients aj and b" for each region are found by back substitution through (2.41) and 

(2.37). 

In order to generate sensible boundary conditions when m ^ 0, I must construct 

hybrid modes in which both S and Q are nonzero. In this case none of the tangential fields 

are separable, since each has both TE and TM parts. Each TE and TM part is, in turn, 

a sum of cylindrical wave terms like eim4,Jm{kp)etßz (P and R will turn out to be Bessel 

functions).   An exact solution would require me to include a superposition of cylindrical 

xAs shown in Appendix B, this requirement in conjunction with the transfer matrix solution is a gener- 
alization of the classic Fabry-Perot laser round-trip amplitude and phase conditions. 
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waves involving all values of k, and the boundary conditions would couple all terms at each 

interface. Fortunately, the coupling between cylindrical waves with different k is small enough 

to ignore [12,34,48]. Therefore I simultaneously and independently enforce the continuity of 

the dominant TE and TM mode components of each tangential field, and my hybrid mode 

boundary conditions become the same as those for pure TE and TM modes. Although these 

boundary conditions are approximate, I feel they are reasonable within the spirit of the 

method. Using more rigorous boundary conditions would require a very complex procedure 

of questionable value given the fundamental approximate nature of the solution. 

2.3.2 Radial Boundary Conditions and Solutions. I solve the radial equation (2.15) 

in piecewise constant geometries, such as in Figure 2.3. The general solutions of (2.15) are 

given in each radial region [/>,-, pi+1] by 

cJMJm(kJMp) + <l?MYm(kJMp)     i ? M 

cjyKm(ikl™p) + d™Im(ikl™p)   i = M  ' 

(2.44) 

Ri(p) = ' 
cT»UkJEp) + dJEYm(kf

Ep)     i ± M 

cJ?Km(ik™p) + d™Im(ik™p)   i = M 

Here Jm and Ym are m-th order Bessel functions of the first and second kind, Im and Km 

are modified m-th order Bessel functions of the first and second kind, and i = 1,2,... ,M 

indexes the inner to outer radial regions. Using the iterative solution procedure described 

in section 2.4, I compute kJE and k™ from (2.24); assume for now that they are known 

constants. These solutions must be joined at each interface pj by matching tangential elec- 

tric and magnetic fields. Inserting (2.12) into (2.6)-(2.11) I compute these tangential field 

components as 

Ez(p,z)   = — (k™)2 P(p)Q(z), (2.45) 
LüEQST 

YD 

E+(p,z)   =    P(p)Q'(z) + R'(p)S(z), (2.46) 
we0erp 

H,{p,z)   =   -^(kJE)2R(P)S(z), (2.47) 
u>p0 
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m 
Hi(p,z)   =   -P'(p)Q(z) + —-R(p)S'(z). 

Wfl0p 
(2.48) 

I consider, in turn, the distinct cases m = 0 and m ^ 0. 

As in the axial problem, when m = 0 I can match boundary conditions with P = 0 

(pure TE modes) or R = 0 (pure TM modes), and it is sufficient to force just two tangential 

field components to be continuous. For TE modes I require Ej, and Hz to be continuous; for 

TM modes I require Ez and H^ to be continuous. Following the same arguments as in the 

axial problem, I construct weighted boundary conditions to require the continuity of 

(kTE)2R{p) and R'(p) (for TE modes), 

^fr-P(p) and P\p) (for TM modes), 
\£r:Q I 

(2.49) 

(2.50) 

at each radial interface /? = />,-• To generate radial boundary conditions independent of z, I 

have replaced er:ij by the weighted permittivity (e™Q) defined in (2.25). 

Inserting the functional forms (2.44) and applying the continuity conditions for either 

a = TE or TM modes, I relate cf, df to cf+1, df+1 at each radial boundary p = p{ through 

the transfer matrices 

where 

A? 
d? 

= Bf 
d? ai+l 

(2.51) 

A™   = 

B?E   = 

ATM     s 

B. TE     _ 

(kjvyukjvpi)   {k™)2Ym{k]*Pi) 

kJEJL(kJE
Pi)        kJ*Y^(kJ*Pi) 

(k™)2 Em(7k™Pi)   (^)2 nm(7k™Pi) 

lkJE-E'm{ik^lPi)      7*S?A(7*SP.-) 

^Mk7MPi)   ^Ym(kJ™Pi) 

[ kJ™j>m{kJ™Pi)    kfy^kJ™Pi) J 

\sr:i+l,Q> T \er:t+l,Q' 

(2.52) 

(2.53) 

(2.54) 

(2.55) 
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Figure 2.3     Illustration of the weighted permittivity profile, and notation, for the WIM 
radial solution. 
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Here I have defined 

1= S 
1   inner regions 

^T outer region 

Jm   inner regions 

Km   outer region 
,   J"Lm 

Ym   inner regions 

Im   outer region 
(2.56) 

As in (2.40), I form a composite system matrix 

[IT] = [A?]-1™^]-1^]^]"1^] • • • [A^riB^ (2.57) 

relating the unknown coefficients in the i = 1 region (core) to the coefficients in the i = M 

region (cladding) via 

d<? 
*11     "12 

L21     U22 

CM 

aM 

(2.58) 

Since I am searching for longitudinally-propagating, laterally-confined VCSEL modes I force 

regularity at the origin and exponential decay as p —> oo by setting 

d» = da
M = 0. (2.59) 

Finally, substituting (2.59) into (2.58) I obtain the radial threshold condition 

t&Cw, «active) = 0. (2.60) 

In order to generate sensible boundary conditions when m ^ 0,1 must construct hybrid 

modes in which both R and P are nonzero. Again, none of the tangential field components 

are separable and it is impossible to match them for all zata radial interface. Furthermore, 

if I mirror my axial treatment and independently force the TE and TM components to be 

continuous I generate inconsistent boundary conditions. For example, independently forcing 

Ez and the TM part of E^> to be continuous requires (k™)2 P(p)/(e^) and P{p)/{eJ%) be 

continuous at each interface. But this forces fc™ itself to be continuous, which is absurd. I 

cannot hope to work with TE and TM modes independently. Therefore, I approximate my 

problem with an equivalent cylindrical dielectric waveguide problem, which admits analytic 
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solutions for hybrid modes.   These approximations are used only to generate boundary 

conditions, not as a substitution for the actual radial and axial solutions in each region. 

Cylindrical waveguide modes depend on z as eißz or e~tßz. My fields, in contrast, depend 

on z via (2.28). There are two differences I must overcome. First, cylindrical waveguide 

modes are characterized by a single axial propagation constant ß, whereas my fields have a 

different axial propagation constant ß" for each axial region and polarization. I can easily 

remedy this by replacing ß) with (ßa), as defined in (2.25). Second, cylindrical waveguide 

modes depend on z as either eißz or e~ißz. But even after replacing ß) with (ßa) my fields 

have a different linear combination of ei{ßa)z and e-'^* in each region, depending on the 

relative values of aj and b". Therefore, for the purpose of constructing boundary conditions, 

I assume that the fields approximate a "pure" standing wave in the axial direction, with 

a]E = 6JE and a™ = -6™. (2.61) 

I assume further that aJE « aJM, and approximate the z-dependence of my fields as 

Q(z) = sin«/?™)*), 

(2.62) 

S(z) = cos({ßTE)z). 

Substituting (2.62) into (2.46) and (2.48), I approximate the <j> field components as 

E*(P,*)   = .mTM.   P(P)Q'(Z) + B!(p)S(z), 
U^r-.QlP 

mfZ\  P(P) + R'(P)) cos {&)*) (2-63) 

and 

^ * 77? ~ 

H^z)   =   -P'(p)Q(z) + —-R(p)S'(z), 
Lop,Qp 

«   \-P'(p)-1I!^-R(p)} sin ((ß)z). (2.64) 
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Here I have replaced er:ij by the appropriate weighted value, and have selectively assumed 

{ßTE) « (ß™) « (ß) to factor out the z dependence. Through a-posteriori comparison with 

my calculated results, I find all these assumptions well justified. 

These approximate expressions for E+ and H+ are separable, as are expressions (2.45) 

and (2.47) for Ez and Hz. Therefore I can immediately construct suitable boundary condi- 

tions for radial hybrid modes by requiring the continuity of 

/_TM\  r\rJi 
\er:Ql 

ue0\er:Q)P 

and P\p) + ^^-Rip). 
UHQP 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

By inserting the functional forms (2.44) and forcing all four of the above combinations to be 

continuous, I link the unknown coefficients at each radial interface p = p{ through the 4 x 4 

transfer matrix 

Ai 

-TM Ci+1 

dfu 

= Bi 
JTM ai+l 

-TE 
Ci+1 

<*P_ JTE 

(2.69) 

where 

Ai = 

(*?™Yj (k™0 X 
).TM \ Jm\Ki Pi) 
\er:i,QI 

0 

(fcpn 
/.TM  \ *m \"-,"      Pi) 
\er:i,Q' 

m 
U1SQ 

l-pr^Jm{k™Pi) 

kJuJL(kJM
Pi) 

m{ß™) ^YU^Pi) 

kJMY^ki™Pi) 

0 0 

(kJE)2UkJEPi)   {kJE)2Ym{kJE
Pi) 

k7EJL(kJEPi)        kJEY^kJE
Pi) 

*&WFPi)    ^Ym(kJEPi) 
(2.7Ö) 

wp0p 

2-18 



Bi = 

(fcTM)^m(7feTMpi) (feTM)2nm(7fe^Pi) 0 

- LTM      )  (e™ t   \ u 

T* V (fcS)asm(7*Sp.O (*.?i)an»(7*Sp.O 

7.^(7^) 7«sc(7«sA) ^^  ^s^ 
(2.71) 

These matrices are mathematically equivalent to those for a cylindrical dielectric waveguide. 

Cascading the interface transfer matrices, I again derive a composite system transfer matrix 

ci 

dju 

-TE cl 

4E 

«11 «12 «13 "14 

«21 «22 «23 «24 

«31 «32 «33 «34 

«41 «42 «43 «44 

„TM 
CM 

dM 

/TE 

JTE 

(2.72) 

relating the innermost and outermost radial coefficients. The endpoint boundary conditions 

(2.59) remain valid. Applying them to (2.72) and demanding nontrivial solutions gives the 

hybrid threshold condition 

«2l(w? «active)     «23^, «active) 

1*41 (w, «active)     «43(<*>, «active) 

which I solve in the complex plane for u> and Kactive- 

= 0, (2.73) 

2.4    Iterative Solution Procedure 

I compute the longitudinal and transverse mode spectrum by self-consistently solving 

the radial and axial problems. The modes are specified by the longitudinal mode number, 

the transverse mode number, and the azimuthal mode number m. Different longitudinal 

modes correspond to successive roots of the axial threshold condition (2.43), while different 

transverse modes correspond to successive roots of the radial threshold conditions (2.60) 

(for TE/TM modes) or (2.73) (for hybrid modes). The energy spacing between longitudinal 

modes is much greater than that between transverse modes. If I let v denote a generalized 

mode index corresponding to a particular TE, TM, or hybrid mode, then the explicit un- 
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knowns for each mode are the vector potential functions P„{p), Q„{z) and/or Rv{p), Sv{z), 

the optical mode frequency uv, and the material gain values (Kactive)„• I iteratively solve the 

axial and radial problems as follows. 

First I focus attention on a particular family of modes by fixing m: for m = 0 I can 

compute TE or TM modes, while for m > 0 only hybrid modes are possible. Then I solve 

the axial problem, taking the effective indices equal to the corresponding values for er:iJ in 

the innermost radial region: this solution corresponds to the standard plane-wave calculation 

appropriate for large-area devices. The ordered roots of the axial threshold condition (2.43) 

yield initial approximations QVo(z) and/or S„Q(z), (Jj^, and (K£S) for the mode u0 of 

interest. For VCSEL lasing mode calculations I am only interested in the first root of (2.43), 

corresponding to the fundamental longitudinal mode. I next compute the kf by inserting 

Q„0(z) and/or S„0(z) into (2.24), giving me enough information to address the radial problem. 

Depending on whether I am solving for TE, TM, or hybrid modes, I then compute the roots 

of the radial threshold condition (2.60) or (2.73), yielding approximations for PVo(p) and/or 

RU0(p), u£0
adial), and («£5?) ; successive roots correspond to progressively higher-order 

transverse modes. Then I alternate between solving the axial and radial problems, always 

updating ß" and kf by inserting the most recent wavefunctions into (2.21) or (2.24) as 

appropriate. In this way I generate a self-consistent solution to the coupled WIM equations 

(2.14) and (2.15), terminating when J™^ = U%**> and («££?)^ = (*%£?)„ to 

within a prescribed tolerance. The procedure converges quite rapidly, allowing me to solve 

for a large number of cavity modes. 

Finally, I note that the character of the modes found depends on both the differential 

equations and on the endpoint boundary conditions enforced. The original application of 

the WIM to rectangular waveguide geometries assumed propagating behavior in the z di- 

rection and evanescent decay in the x and y directions. These endpoint conditions resulted 

in a standard eigenvalue problem, with the longitudinal propagation constant ß being the 

eigenvalue. In this case, the Rayleigh-Ritz variational principle asserts that the resulting 

approximation of ß will be more accurate than the wavefunctions themselves. In my ap- 

plication, I have enforced evanescent decay in the radial direction and have permitted only 
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outward propagating waves in the z direction. This constrains the mode frequency u and the 

material gain K, as opposed to the propagation constant /?, and these unknown parameters 

no longer appear as eigenvalues. Therefore the Rayleigh-Ritz principle has nothing to say 

about the relative accuracy of u; and K. Nevertheless, general variational principles dictate 

that I have found the best separable solution, and therefore I expect the resulting values for 

u and K to be reasonably accurate. Note that I can also apply the general WIM formalism 

to solve for radially propagating modes by relaxing the evanescent decay condition on the 

radial functions. As it turns out, these "parasitic" modes are precisely what is required to 

capture diffraction within the general framework of the weighted index method. I append 

the current WIM treatment to include these modes in Chapter V. However, before this 

I proceed and apply the current version of the method to several popular VCSELs in the 

following chapter. 
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777.   Weighted Index Method Applications and Results 

In Chapter II, I presented a new, extremely general and rapid technique for estimating the 

spatial profile, optical confinement factor, resonant frequency, and mirror and absorption 

losses of lasing modes in cylindrically-symmetric VCSEL geometries. In this chapter, I 

apply the weighted index method to several VCSEL geometries of current interest. The 

chapter is broken into two major parts. First, I compute all the optical laser parameters, 

save diffraction loss, for several lowest order modes of an oxide apertured and an etched post 

device. I compute all these parameters as a function of oxide aperture or post radius. These 

general results showcase the capabilities of the method. Furthermore, from these results I 

ascertain the basic changes in the optical mode for small aperture geometries. These include 

a blueshiß in mode resonance, a loss of transverse confinement, and a heretofore unreported 

polarization dependent change in DBR reflectance. 

Second, I pit the weighted index method against a simpler, more popular effective index 

method for blueshift calculation. Both models are applied to two different VCSEL designs 

emitting near 780 nm and 850 nm. I find that the weighted index method matches the data 

remarkably well, while the effective index calculation underestimates the blueshift. These 

results show that the weighted index model may be used to match the cavity resonance of 

small-aperture structures to the gain peak, and thereby minimize the threshold current. 

3.1    Etched Post and Oxide Apertured VCSELs 

Using the methods described in the last chapter, I calculate lasing modes in etched-post 

[6,76] and oxide-apertured [15,32] devices fabricated from a A =980 nm, 1.5A-cavity VCSEL. 

The VCSEL reflectors consist of a 17.5 period p-type GaAs/Alo^Gao.osAs top Distributed 

Bragg Reflector (DBR) for the oxide-apertured structure, and a 4 period GaAs/Al^O top 

DBR with a A/4 p+ GaAs contact layer for the post geometry. The bottom reflector in 

both structures is a 22 period n-type GaAs/Alo^Gao.osAs DBR. The 1.5A-cavity is step- 

tapered with (intrinsic) layers of Alo.9sGao.02As, Alo.65Gao.35As, Alo.30Gao.70As, and GaAs, 

culminating in a single In0.2Ga0.sAs quantum well.  Both structures are grown on a GaAs 
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substrate. The etched-post structure, illustrated in Figure 3.1, is formed by etching the 

top GaAs/AlAs DBR down to the A/4 GaAs contact layer, then oxidizing the AlAs layers. 

The oxide-apertured structure, illustrated in Figure 3.2, is formed by oxidizing the A/4 

Al.9sGa.02As layers in the cavity. I model each region as a cylindrically-symmetric layer of 

constant refractive index, assuming the material parameters in Table 3.1. Free carrier losses 

are incorporated by taking Kitj negative. Material gain is incorporated by taking «active 

positive in the active quantum well region. 

Material Index Doping (1018 cm- 
-3) Loss (cm x) 

In0.2Ga0.sAs 3.5691 none N/A 
GaAs 3.5256 none N/A 

Alo.3Gao.7As 3.3622 none N/A 
Alo.65Gao.35As 3.1637 none N/A 
Alo.98Gao.02As 2.9713 none N/A 

AlxO 1.55 none N/A 
n-GaAs 3.5256 2 10 

n-Alo.92Gao.08As 3.0067 2 10 
p-GaAs 3.5256 1 11.5 

p-Alo.92Gao.08As 3.0067 1 11.5 
p+-GaAs 3.5256 5 57.5 

Table 3.1     Material Parameters used for WIM Simulations 

The lowest frequency, or fundamental, VCSEL lasing mode is analogous to the HEMn 

(or HEn) hybrid waveguide mode. Here the first and second subscripts refer, respectively, 

to the azimuthal (m) and radial mode numbers. The HEMn mode is the most plane-wave 

like of all the propagating bound modes, despite containing both Ez and Hz [58,69]. It is 

also the only waveguide mode having a radial intensity distribution with a maximum at the 

center. Following this terminology, I refer to the next higher-order VCSEL modes as HEM2i, 

TE01, and TM0i modes; these modes make up the degenerate LPn mode under the "linear 

polarization" approximation [70]. All three of these modes feature a radial intensity profile 

with a null at the center. 

3.1.1 Field Profile. In Figures 3.3 and 3.4, I plot the longitudinal standing wave 

intensity profile for the etched-post and oxide-apertured VCSELs. For the oxide-apertured 

structure, the contrast between DBR layers is small and the fields penetrate deeply into 
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1.550        2.9713     3.0067    3.1637      3.3622     3.5256    3.5691 

Figure 3.1     Quasi-3D plot of the etched-post VCSEL index profile. 
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1.550        2.9713     3.0067    3.1637      3.3622     3.5256    3.5691 

Figure 3.2     Quasi-3D plot of the oxide-apertured VCSEL index profile. 
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the top DBR. Therefore the large index difference between the semiconductor cavity and 

surrounding oxide is heavily weighted in (2.25), giving a large discontinuity in (e^) between 

the inner and outer radial regions. As a result, the fields within the oxide-aperture VCSEL 

are tightly confined to the core. In contrast, for the etched-post structure the large index 

contrast between top DBR layers allows very little field penetration, resulting in a smaller 

effective index difference and a correspondingly less confined field. In both structures, the 

fundamental mode is more confined than higher-order modes, and smaller VCSELs exhibit 

less confinement than larger ones. These effects can also be seen in the three-dimensional 

field energy distribution, given by [7] 

1 
w = we + wm = - £Q£T E + »o H (3.1) 

I plot w for the HEMn and TE0i modes, for both structures, in Figures 3.5 - 3.8. Note that 

the familiar standing wave pattern does not appear in Figures 3.5 - 3.8. This is a result of 

the fact that these energy plots include both an electric and a magnetic field contribution. 

Nodes of E (z) correspond to antinodes of H (z) and vice-versa, effectively "washing out" 

the standing wave and leaving only the envelope function. 

3.1.2    Transverse Confinement Factor.        The transverse confinement factor Ttr is 

usually defined as 

ptr _  Jactive l-^l     "'S ,^\ 

/ \Ef   ds 

where the integral in the numerator is over the transverse extent of the active region and the 

integral in the denominator is over the entire transverse extent of the field. Figure 3.9 shows 

estimates of the transverse confinement factor for the first two modes of the etched-post and 

oxide-apertured VCSELs as a function of cavity radius. The estimates are generated from 

(3.2), using E = E(p) -► E^p) for TE modes (2.63) and E -+ H^p) for TM modes (2.64); 

for hybrid modes I use both E$(p) and H^p) and average the results. I use the effective <J) 

components since they are already averaged over z and are representative of the total field 

intensity profile. As the cavity radius decreases, more of the field intensity leaks out of the 

active region and the confinement factors drop monotonically. This behavior becomes more 
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Figure 3.3     Index and standing intensity profile along the axial direction for a 1.4 (im radius 
etched-post VCSEL. 
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Figure 3.4     Index and standing intensity profile along the axial direction for a 1.4 pm radius 
oxide-apertured VCSEL. 
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Figure 3.5 HEMu mode energy profile for a 1.4 fim radius etched-post VCSEL 
distribution on the top surface is amplified in order to illustrated 
mode. 

radius etched-post VCSEL. The energy 
fied in order to illustrated the emitted 
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Figure 3.6 TE0i mode energy profile for a 1.4 (im radius etched-post VCSEL. The energy 
distribution on the top surface is amplified in order to illustrated the emitted 
mode. 
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Figure 3.7 HEMn mode energy profile for a 1.4 fj,m radius oxide-apertured VCSEL. The 
energy distribution on the top surface is amplified in order to illustrated the 
emitted mode. 
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Figure 3.8 TEoi mode energy profile for a 1.4 fim radius oxide-apertured VCSEL. The 
energy distribution on the top surface is amplified in order to illustrated the 
emitted mode. 
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pronounced for higher-order modes, as illustrated in Figure 3.10. My oxide-apertured de- 

vices confine the optical mode more strongly to the active region and have higher transverse 

confinement factors than my etched-post structures. But the larger rate of change in confine- 

ment factor for the etched-post VCSEL, as shown in 3.9, yields better modal discrimination 

via Ttr. For example, a 1 ^m radius device has Artr = rtr(HEMll) - Ttr(TE01) = 0.0759 

for the etched-post VCSEL, compared to only 0.0379 for the oxide-apertured VCSEL. This 

illustrates the effectiveness of employing a small radial index difference to introduce mode 

selective losses and enhance single mode lasing [27]. However, single mode lasing may also 

be enhanced by exploiting the spectral separation between transverse modes. I will show 

this in the following section. 

3.1.3 Resonant Wavelength. In Figures 3.11 and 3.12 I plot the resonant wave- 

lengths as a function of cavity radius for various modes in etched-post and oxide-apertured 

structures. The resonant wavelength blueshifts as the oxide or post diameter shrinks, a 

dramatic departure from plane-wave results. This wavelength shift can be easily explained 

by examining the weighted dispersion relations (2.21) and (2.24), both of which take the 

functional form 

«> + (ßD = £<*>. (3-3) 

Although both (k2
p) and (ß2

z) change as the radius shrinks, (ß2
z) remains very close to its plane- 

wave value. Therefore, as (k2
p) increases from its plane-wave value of zero, w increases, leading 

to the blueshift illustrated in Figures 3.11 and 3.12. This effect has been previously estimated 

using simpler approximations [21], but the self-consistent WIM results are more accurate, 

as shown in Figures 3.21 and 3.22. To construct low-threshold microcavity VCSELs, the 

quantum well emission peak must be matched to the blueshifted cavity resonance of the 

desired lasing mode. 

The resonant wavelength changes more quickly with radius in my oxide-apertured VC- 

SELs as compared with my etched-post structures. This occurs because the oxide-apertured 

device exhibits a larger difference in effective index between the inner and outer radial re- 

gions, resulting in a larger field confinement and a correspondingly larger value for (k2) 
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Figure 3.9     Transverse confinement factor for the first two modes of the etched-post and 
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Figure 3.12     Resonant wavelength for the fundamental, and a few sample higher order 
modes for the oxide-apertured VCSEL. 
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in the waveguide core. As a result, the oxide-apertured structure provides more spectral 

discrimination between the VCSEL resonant modes. For example, in a 1 /mi VCSEL 

AA = A(HEMll) - A(TE01) = 68.9 Ä for the oxide-apertured structure as compared to 

59.8 Ä for the etched-post. This effect might be exploited to obtain low threshold, single 

mode lasing. As discussed in my patent (pending) [22,55], if the gain spectrum is sufficiently 

narrow, spectral mode discrimination may be used to select the fundamental lasing mode. 

It is possible that a quantum dot gain region will provide the necessary narrow-band gain. 

In contrast, as discussed in the last section, traditional single mode designs rely on thresh- 

old gain discrimination. Here the difference in threshold gain between the fundamental and 

higher order modes is large and for low powers, the VCSEL will läse in a single mode. This 

type of design is often referred to as anti-guiding. The principal drawback of this method 

is an increased threshold for all the modes. By using the spectral separation, this problem 

may be avoided. 

Finally, I plot the components of the quasi-degenerate LPn mode in Figure 3.13. The 

results show a small, but non-zero, splitting of the mode for aperture radii <« 0.85 /mi, 

indicating where the LP mode approximation begins to break down. Overall, however, the 

LP mode approximation is very good throughout the convergent range of the calculation. I 

exploit this fact to simplify the weighted index method to a scalar technique in Chapter V. 

3.1.4 Mirror and Absorption Loss. Within the WIM framework, I approximate 

the VCSEL cavity modes as superpositions of cylindrical waves. Each of these, in turn, can 

be viewed as a superposition of TE and TM plane waves propagating at an angle 

(9) = arctan (&£) (3.4) 

to the z axis. As the cavity radius decreases, the effective transverse propagation constant 

(kp) increases for all modes and, consequently, the average angle of incidence for the compo- 

nent plane waves impinging on each DBR interface increases. The power reflectivity for TE 

waves increases monotonically with angle until the total internal reflection angle is reached, 

while the power reflectivity for TM waves decreases monotonically until the Brewster angle 
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Figure 3.13     Resonant wavelength for the components of the quasi-degenerate LPn mode, 
illustrating the point at which the degeneracy is broken. 
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is reached [65]. As a result, the TE wave components encounter more reflective DBR mirrors 

as the cavity radius shrinks, while the TM wave components encounter less reflective DBRs; 

Figure 3.14 illustrates this behavior for the oxide-apertured structure. Therefore the TE 

wave components suffer less mirror loss, the TM wave components more, and the mirror 

losses for pure TE VCSEL modes decreases with cavity radius, while the mirror losses for 

TM modes increases. For HEM modes—comprised of both TE and TM components—the 

change in reflectivity approximately cancels out. All of these trends are evident in Figures 

3.15 - 3.18, which show the mirror and absorption losses divided by the total confinement 

factor Ttot, 

_1_ ^(mirror) + ^absorption)} = ^K^X, (3.5) 

for the fundamental and several higher order VCSEL transverse modes. The quantity I plot 

is precisely the threshold gain in the absence of diffraction loss. 

The results shown in Figures 3.14 - 3.16 agree with prior in-plane laser studies that 

show a higher facet reflectance for TE than TM modes and a similar propagation constant (ß) 

for both TE and TM modes [2,34,38,41]. For both VCSELs and in-plane lasers, these trends 

in mirror reflectivity become more pronounced for higher-order modes. The minima in the 

TE curves in Figures 3.15 and 3.16 occurs at the point where the change in confinement factor 

balances the change in mirror reflectance. For TM and HEM modes, no minima exists since 

the mirror reflectance is approximately constant (HEM) or decreases (TM) with decreasing 

radius. The radius at which each curve terminates indicates the "minimum" aperture size for 

each optical mode. This size effect has been previously estimated by simpler calculations [21], 

but the WIM values should be more accurate. Since my oxide-apertured structure confines 

the fields better than the etched-post structure, it supports bound modes at smaller cavity 

radii. This completes the overview of the WIM features. I now turn to a more challenging 

task for the method, prediction of experimental VCSEL data. 

3.2   Experimental Verification of Blueshiß Predictions 

I compare measured blueshifts for two different device designs against predictions from 

my weighted index model and a simpler effective index model. Both models require only one 
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adjustable parameter—the cavity thickness is adjusted to match the Fabry-Perot resonance 

of broad-area devices. I find that the weighted index calculation reproduces the dependence 

of lasing wavelength on aperture radius remarkably well, while the effective index model 

underestimates the blueshift. 

3.2.1 Effective Index Method. A simple and popular approximation to calculate 

the blueshift is the effective index method. In this approach, an axial wavevector ß is calcu- 

lated for each layer by propagating plane-waves through the dielectric layer stack, using the 

refractive indices at p = 0 for each layer. The resulting (scalar) electric field profile £(z) is 

then used to compute effective indices 

lfdz\t(z)\2 n*(p = 0,z) _    lfdz\gz)\2 n»(p = oo,z) .     . 
«core = \     ,   ,     ...   ,,2 >   Wclad =  \\  .    ,   ,|2 \ö-°) 

V fdz\£(z)\2 V Jdz \Z(Z)\ 

corresponding to the core and cladding indices for an "effective" cylindrical dielectric waveg- 

uide. An effective axial wavevector (ß) is computed similarly. The radial wave equation 

for this waveguide is then solved, taking regular Bessel functions inside the aperture and 

evanescent solutions outside. This procedure fixes the radial wavevector k, and the resonant 

frequency may then be calculated from a weighted dispersion relation. Augmentations of 

this model and applications to oxide-apertured VCSELs are given in References [26] and [21]. 

3.2.2 Experiment. I compare both effective- and weighted-index calculations of the 

blueshift against measurements performed on two different VCSEL structures. To conform 

with the most often measured modes1,1 label the VCSEL modes in accordance with the linear 

polarization (LP) convention [58]. Therefore, the fundamental lasing mode—characterized 

by a peak in intensity at the mode center—is labeled as LP0i. Similarly, the first higher-order 

VCSEL mode—characterized by a null at the mode center—is denoted by LPn. These LP 

modes approach the exact fiber optic modes as the index difference between the core and 

1The fact that the LP modes, not the vector modes, are most often observed is a result of two factors: (1) 
the relatively small weighted index difference between the inner and outer radial regions, which supports the 
"weakly guiding" assumption upon which the LP modes are based; and (2) the fact that, for small aperture 
radii, diffraction dominates any difference in threshold between the quasi-degenerate constituents of an LP 
mode. As a result of these arguments, I change the WIM to solve for LP modes in Chapter V. 

3-25 



cladding becomes small: the LP0i mode includes the doubly degenerate HEMn modes, and 

the LPn mode includes the TE0i, TM0i, and doubly degenerate HEM2i modes. 

The first VCSEL design is a 1-A cavity, single oxide aperture device, designed for 780 nm 

emission [66]. The active region has four 80 Ä Alo.11Gao.89As quantum wells separated by 80 

Ä Alo.3Gao.7As barriers. On either side of the active region lies an Alo.5Gao.5As spacer layer, 

completing the 1-A cavity. The upper and lower distributed Bragg reflectors (DBRs) consist 

of 26 and 40.5 periods of Alo.3Gao.7As/Alo.9Gao.jAs, respectively. All DBR interfaces, as well 

as the spacer-to-DBR interfaces, are linearly graded. To facilitate oxidation, the upper-DBR 

low-index layer adjacent to the cavity is AlAs. When oxidized, this layer contains a square 

aperture. The entire structure is grown on a GaAs substrate. The structure is illustrated in 

Figure 3.19. 

To investigate the blueshift, five devices were fabricated from this layer structure: four 

with small apertures (< 5 ^m side length) and one broad area device with a 13 fxm x 13 pm 

aperture. All five devices were located within a 0.5 mm x 0.5 mm area of the wafer, ensuring 

excellent device uniformity. While electrically pumping the devices at half threshold, lumi- 

nescence data was collected with an optical multichannel analyzer. The electroluminescence 

data from the broad-area device showed a fundamental mode at 782 nm, which I interpret 

as the Fabry-Perot resonance of the VCSEL layer structure. The remaining measurement 

results for the four small-aperture devices are plotted in Figure 3.20; a semilog scale is em- 

ployed to bring out the details in the electroluminescence response. For each aperture size at 

least two distinct resonances are visible. As the aperture size increases, more resonant modes 

appear, and the spacing between them decreases. To precisely locate the mode resonances, 

the peaks in Figure 3.20 were fitted with Lorentzian lineshape functions. Moving from right 

to left, the first two resonances represent the LP0i and LPn modes. 

The second VCSEL design is a 1-A cavity, double-oxide-aperture device, designed for 

850 nm emission [14]. The active region has five 80 Ä GaAs quantum wells separated 

by Alo.3Gao.7As barriers. The upper and lower DBRs consist of 26 and 36.5 periods of 

Alo.i6Gao.s4As/Alo.92Gao.08As, respectively, with graded interfaces between the layers and 

between the DBRs and the cavity.  Square apertures are formed by oxidizing 182 A thick 
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Figure 3.20     Electroluminescence data taken at 0.5 lth for four different VCSELs, each 
labeled by square-aperture side length. 
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Alo.98Gao.02As layers, inserted in the third low-index layer away from the cavity in both the 

upper and lower DBRs. Due to oxidation into the graded regions, the final oxide layer is 

approximately 300 Ä thick. The entire structure is grown on a GaAs substrate. Oxide- 

apertured devices of various sizes were fabricated as described in Reference [14], and the 

resonant frequency of the fundamental cavity mode was measured as a function of aperture 

size. The fundamental resonance of broad-area devices occurred at 851 nm. 

3.2.3 Blueshiß Comparison. Figures 3.21 and 3.22 compare both effective-index 

and weighted-index blueshift calculations against the measurements for the LP0i and LPn 

modes [57]. Since the measurements are for a square-aperture device, while the calculation 

is based on a circular aperture, I compare the results by matching cross-sectional area. 

Therefore, the abscissa in Figures 3.21 and 3.22 is effective aperture radius: 

-7r   measurement 
reff = ■ ,    ,   • calculation 

= )   ^   — (3j) 

where a is the side length of the square aperture and r is the device radius in the calculation. 

Although this substitution cannot be rigorously justified, it does provide excellent agreement 

with the data. The theoretical results shown in Figures 3.21 and 3.22 were generated by 

analyzing device structures almost the same as those measured. (I approximated the graded 

interfaces with abrupt heterojunctions.) To calibrate the models to the actual structures 

grown, I adjusted the cavity thicknesses in both VCSEL designs so that the calculated 

Fabry-Perot resonance matched measurements performed on broad area devices (& 782 nm 

for the first VCSEL design, « 851 nm for the second). Apart from these layer thicknesses, 

my calculations included no adjustable parameters. Note that adjusting these layers serves 

primarily to shift the calculated curves up or down in wavelength: it does not affect the 

shape as a function of radius. All calculated curves terminate when a radially-bound mode 

can no longer be found. This provides an estimate of the minimum aperture radius required 

to laterally confine the mode. The effective index step nCOTe — reciad, as calculated from (3.6), 

was equal to 0.033 for the first VCSEL design and 0.061 for the second. 
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Figure 3.21 Calculated and measured resonant wavelengths of the fundamental (LP0i, 
upper curves) and first higher-order (LPn, lower curves) modes as a function 
of aperture size for the first VCSEL design; discrete points represent measured 
values. The inset shows the longitudinal refractive index and field intensity- 
profiles near the cavity. 
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Figure 3.22 Calculated and measured resonant wavelengths of the fundamental (LP0i) 
mode as a function of aperture size for the second VCSEL design. The inset 
shows the longitudinal refractive index and field intensity profiles near the 
cavity. 
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From Figures 3.21 and 3.22, I see that the WIM calculation accurately predicts the 

dependence of wavelength on aperture size, matching the measurements remarkably well. 

The simple effective index calculation, on the other hand, significantly underestimates the 

blueshift for both the fundamental (LP0i) and first higher-order (LPn) mode. The small dif- 

ferences between the WIM calculations and the measurements in Figures 3.21 and 3.22 could 

result from several factors. First, the model is restricted to piecewise-constant refractive in- 

dices, while the actual structures have graded interfaces. Second, the modeling of a square 

aperture with a circular one could introduce error. Third, the weighted index method is itself 

not exact, since it assumes separable solutions. Non-separable effects—such as diffractive 

loss—are not included, and these effects could influence the resonant wavelengths. Last, the 

measured aperture sizes are only accurate to within ± 0.2 ^m. 

I have now completed an "initial validation" of the weighted index method, verifying 

the resonance predictions against experiment. The ability to predict mode blueshifts is 

certainly valuable in device design, allowing for accurate alignment of the cavity resonance 

to the gain peak. However, the principal optical parameter of interest is the threshold gain. 

Since the WIM is inherently limited by the separability assumption, it may not be used 

directly to compute diffraction effects. Therefore, I forfeit the speed and efficiency of the 

method and turn to a computational technique. I present my new finite element model— 

capable of computing all optical VCSEL parameters—in the next chapter. 
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IV.   Vector Finite Element Method 

In this chapter, I present a quasi-exact finite element method (FEM) model for analyzing 

the optical modes of microcavity VCSELs [53,54,56]. Although computationally intensive, 

this model has the distinct advantage that it calculates the total optical loss, including 

diffraction. This model is based on a variational solution of the vector Helmholtz equation 

in microcavity geometries. The results of this model not only allow for direct calculation of 

lasing mode parameters, but also a better understanding of the underlying physics associated 

with VCSEL oxides. To derive basic oxide design rules, I apply the model to several versions 

of a novel oxide-aperture, oxide mirror VCSEL [67]. I find that the diffraction loss may 

be qualitatively understood as a coupling between the lasing eigenmode and the parasitic 

mode continuum [20]. Within this interpretation, the diffraction is a result of three basic 

physical effects: (1) the amount of transverse confinement afforded to the optical mode, (2) 

the relative alignment between the propagation vectors of the eigenmode and the radially 

radiating parasitic modes, and (3) the density of parasitic modes in the spectral vicinity of 

the eigenmode. 

4.1    Vector Field Equations and the Variational Form 

I want to find the electric (Ej and magnetic (Hj field profiles, the resonant wave- 

length (A0), and the threshold gain (gth) for each cavity mode in azimuthally-symmetric 

VCSEL structures. For this I must solve Maxwell's equations subject to appropriate bound- 

ary conditions at each material interface. The steady-state, time-harmonic electric field 

satisfies the vector Helmholtz equation (in MKS units) 

V x —V x E - khrE = -iun0J, (4.1) 

where E, H, and the electric current J depend on time as etwt {u = 2irc/\); e0) Mo> &n& ^o 

are the free space permittivity, permeability, and propagation constant, respectively. It can 

be shown [37] that a weak solution to (4.1) may be obtained by extremizing the functional 
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J(E)   =    III -(vxE)-(vxE)dv-kljjjerE-Edv (4.2) 

+iufi0 II (hxE\-H ds+ III E-Jdv. 

(By extremize, I mean forcing 6 J = 0, where 6 is the variational operator.) Here tt and T 

are the problem domain and boundary, respectively. For azimuthally-symmetric structures, 

the material parameters (\iT and sr) are functions of p and z only, and I may separate out 

the <j> dependence in (4.2) by assuming 

E* - cos (m<f>), (4.3) 

and 

Ep,E,~8m(m<l>), (4.4) 

where m is the azimuthal mode number. For integer m, the integrals over <j> = [0,2ir] yield 

a constant factor which may be ignored, effectively reducing the dimension of the problem 

from three to two. In addition, since different azimuthal modes are orthogonal, I may deal 

with each value of m independently. 

For lasing mode analysis, I set the source current J to zero, making (4.1) a source-free 

eigenmode problem. By assuming perfect conducting boundary conditions I h • E = 0J on 

T, which I justify in Section 4.3, the surface integral in (4.2) drops out and I am left with 

J(E) = II — hxE\-hxE\dv-kl II erE ■ Edv. (4.5) 

Here ti represents the two-dimensional domain (of the VCSEL) over the p-z plane. My task 
—* —* 

is then to find the E field which extremizes (4.5). That is, I must find the E that satisfies 

II — (v x i) • (v x 8E\ dv - kl II erE -8Edv = 0, (4.6) 
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for all field variations 6E. Equation (4.6) is a generalized eigenvalue problem, 

S(E)-(T(E) = 0. (4.7) 

The S and T operators are denned by 

5(\i/) =  II — (v x tf) • (v x 8^ dv, (4.8) 

and 

T(tf) = [f er$-8$ dv. (4.9) 
J JQ 

The eigenvalue £ is defined as 

C = kl = ^. (4-10) 
cr 

All the desired mode information may be found by solving (4.6). For each mode, the eigen- 

value is the square of the (generally complex) free-space propagation constant, which is 

related to the modal wavelength (A0) (4.22) and the total optical loss or threshold gain 

{9th) (4.26). The eigenvectors are simply the time-harmonic (vector) electric fields IE) . I 

approximate the solution to (4.6) using the finite element method. 

4-2   Finite Elements and Matrices 

The formalism developed in the last section is general and could apply to any of several 

variational approaches to solving Maxwell's equations. In this section, I narrow my attention 

to the finite element method (FEM). In the finite element method, the solution to (4.6) is 

approximated by limiting the space of admissible functions E to the linear superposition of 

a finite set of basis functions (generally characterized by the fact that they are non-zero only 

over a subdomain fle, the domain of mesh element e). In my vector FEM, I expand the fields 

over a basis of vector functions [49], 

N 

E = J2^i- (4-11) 
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Here N is the total number of basis functions in the expansion, xi are unknown coefficients, 

and rßi are the vector basis functions. These functions are second order node, edge, and 

face element functions, given in Appendix C. They are specifically designed to model m = 1 

modes. Substituting (4.11) into (4.6) and exchanging the order of summation and integration 

yields 

5 Xi ill ~ (V X ty ' (V X ^ ^ ~ k° II ^ ' ^ dV) = °' (4'12) 

Ensuring (4.12) holds for all $• (same set of functions as $,-), ensures it will hold for any 

linear superposition of ^-, the finite basis analogy of 6E. The N equations represented by 

(4.12) are exactly (4.7)-(4.9) taken over a finite basis, written conveniently in linear algebra 

notation as 

SX-£TX = 0, (4.13) 

where, 

au = I! - (V x &) • (V x ^) dv, (4.14) 

titj= [[ erh-fadv, (4.15) 
J JQ 

and the eigenvalue (£) definition (4.10) remains unchanged. 

I define my basis set over a triangular mesh in the p — z plane, as illustrated in Figure 

4.1. By using (randomly shaped) triangular elements, I can accommodate general VCSEL 

designs—including for example tapered oxides—and avoid creating an artificial, mesh-driven 

predisposition to any given vector field component. Due to the form of my basis expansion 

and the use of absorbing regions (discussed below), S and T will be very large (TV ~ 50,000), 

sparse, non-Hermitian matrices. As a result, special matrix techniques are required to solve 

(4.13). In practice this is the most challenging part of the finite element solution, and 

certainly the most time consuming. I chose to solve the eigenvalue problem using an iterative 

Arnoldi algorithm [46,62] with spectral transformation; this algorithm allows me to search 

for "mildly complex" (e.g., Re(£) > Im(£)) eigenvalues over a given range of the real axis. 
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Figure 4.1     Sample finite element mesh for an oxide-apertured, oxide DBR VCSEL. 
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4-3   Mesh Termination 

By far the greatest potential error source in the finite element VCSEL analysis is 

mesh termination. Due to the incomplete optical confinement of both the oxide apertures 

and the VCSEL mirrors, the true domain of a VCSEL field solution extends to infinity in 

all directions. Hence, an artificial mesh termination is required for FEM application. A 

properly designed mesh termination for this problem must mimic the unbounded nature of 

the domain, eliminating nonphysical reflections at the mesh edge. In addition, since the 

FEM computational demand—both CPU time and memory—scales super-linearly with TV, I 

prefer to place my termination as close as possible to the primary domain of interest, thereby 

minimizing the amount of "wasted" mesh space. 

To terminate my mesh, I insert an artificial absorbing layer (AL) between the principle 

problem (VCSEL) domain (üv) and the problem boundary (r) [37]. This layer allows me to 

use perfect conductor boundary conditions on V, as I assumed in Section 4.1, eliminating the 

surface integral term in the variational form and dramatically simplifying the FEM analysis. 

I define fiy by a rectangular region in the p - z plane, bounded by the bottom mirror- 

to-substrate plane (TB) and the top mirror-to-air plane (TT) in the z direction, and the 

transverse lasing mode size (Ts) in the p direction. I determine Ts a-posteriori, as discussed 

in Appendix D.3. I surround tiy by the AL as illustrated in Figure 4.2, where the AL domain 

is the union of the top, side, and bottom AL regions (ÜAL = üTnüsnüB)- Due to the high 

reflectance of the distributed Bragg reflectors (DBRs), my main concern is absorbing any 

radiation incident on the radial boundary Ts- Therefore, I focus my analysis on the radial 

AL (Us)] the optimal axial AL design (ttT and ÜB) falls out of the radial analysis as I show 

in Appendix D. 

A basic requirement for minimizing reflection is that the impedance f y/p/eJ of the 

absorbing layer in each region must match the radially adjacent VCSEL region.  I enforce 
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Figure 4.2 Illustration of the FEM VCSEL problem domain: Civ is the VCSEL domain, 

and us, CIT, and ÜB are the side, top, and bottom absorbing layer (AL) do- 
mains, respectively. The VCSEL and AL domains are separated by the bound- 
aries Ts, TT, and TB, and the entire problem domain is bounded by the closed 
cylinder T. 
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this condition by denning the absorbing layer material parameters as1 

efj(p) = a(p)er!J,       and     fi%(p) = a{p)^. (4.16) 

Here erj and \ir j are the VCSEL material parameters in axial region j (denned by Zj_i < 

z < Zj) radially adjacent to the AL (e.g., just to the left of Ts), and 

a(p) = 1 - ib(p). (4.17) 

The absorbing layer performance depends entirely on the function b(p). I arrive at a 

suitable function b(p) through a detailed design optimization. First, I obtain a rough estimate 

using an asymptotic description of the fields and reflections, as described in Appendix D.I. 

Then I fine-tune the layer by minimizing the exact reflection values as obtained by a rigorous 

transfer matrix calculation, described in Appendix D.2. 

4-4    Results and Analysis 

To illustrate the application of the FEM for VCSELs, I analyze several versions of 

a basic 870 nm oxide-apertured, oxide DBR VCSEL [67]. The VCSEL has five and a half 

periods of A^Ga^TAs/Al^Oy in the bottom DBR and four in the top DBR. The cavity is 1A 

thick and contains a single 600 Ä GaAs bulk gain region centered between two Alo.3Gao.7As 

barrier layers. A 300 Ä AlAs layer is included in the top barrier to form an oxide aperture. 

Although an actual oxide aperture formed in AlAs would have a square cross-section, I treat 

it as circular to maintain the azimuthal symmetry. The entire structure including the GaAs 

substrate is illustrated in Figure 4.1. The versions of this structure I examined are: 

• 1A-1THIN the structure as described above, 

• 1A-1THICK same structure with a 600 Ä thick oxide aperture, 

1Before choosing (4.16), I considered a diagonal anisotropic a(p) for a perfectly matched layer (PML) 
design [45,63].  However, I found that the extra degrees of freedom provided no advantage for absorbing 

general outward propagating cylindrical waves of the form l Hin (kp) et^ze"n^j. 
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• 1A-2THICK same structure with a 600 Ä thick oxide aperture in both the top and 

bottom barrier regions, and 

• A/2-1THICK same DBRs but with a A/2 cavity and a 600 Ä thick oxide aperture in 

the top barrier region. 

All materials indices are assumed to be real so that the only source of field loss is 

through absorption in the ALs. For this particular structure, the absorbing layer function 

b(p) is derived in Appendix D.3. 

4.4.I Lasing Mode Fields. In Figures 4.3 and 4.4 I plot | E4, | and the time averaged 

electromagnetic energy density, 

1 

"=4 
£Q6T)J E + Mo H (4.18) 

for the sample 1A-1THIN, pox = 0.4 fim VCSEL; these plots are representative of the general 

lasing mode profiles for all the VCSELs I tested. The fields are found by substituting the 

lasing mode eigenvector (X) into the field expansion given in (4.11). The E^ profile (Figure 

4.3) is similar to the familiar standing wave profile obtained via simple scalar field techniques, 

however, I anticipate my result is more accurate due to the full vector solution. The energy 

density (4.4) is found by estimating H from the E field expansion (4.11) and Faraday's law. 

Although this is less familiar than the E$ profile, it is a more accurate representation of the 

spatial mode energy distribution throughout the VCSEL. 

4.4.2    Confinement Factor.      Using the spatial mode profile, I estimate the total and 

transverse confinement factors as 

and 

fn       wdv 
ptot  _   ^"pump  

Lv
wdv ' 

r 
tr     •'"pump 

wdv 
■ptr __ 

L     wdv"1 
■'"gain 

(4.19) 

(4.20) 
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p(|nm) 

Figure 4.3 Example plot of \E<j,\ for the 1A-1THIN structure with oxide aperture radius 
pox = 0.4 jum. To increase clarity, the figure domain is smaller than the calcu- 
lation domain, and the background intensity is set to white. 

4-10 



p(jiim) 

Figure 4.4 Example plot of the stored energy density w for the 1A-1THIN structure with 
oxide aperture radius pox = 0.4 /mi. To increase clarity, the figure domain is 
smaller than the calculation domain, and the background intensity is set to 
white. 
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respectively; tiv is the VCSEL volume, and fipmnp and ügain are the pumped and total volume 

of the gain region, respectively. For purpose of calculation, I estimate Qpvaxip as the volume 

of the active layer inside the oxide aperture (e.g., with p < pox). The total confinement 

factor represents the percentage of the mode energy overlapping the active gain region2. I 

use this later in the Fabry-Perot laser equation to estimate material threshold gain from the 

total modal loss (4.26). The transverse confinement factor has less quantitative application 

but is a nice indicator of how well the lasing mode is confined in the transverse dimension. 

I plot rtr for each of the VCSEL structures in Figure 4.5. The results for the 1A cavity 

are somewhat intuitive: for any given radius more and thicker oxides yield greater confine- 

ment. For the A/2 case, the oxide aperture does not overlap well (in the z direction) with 

the standing wave. Therefore, the transverse confinement is relatively small, however, the 

total confinement factor—due to the short cavity—is very large, as shown in Figure 4.6. The 

high contrast DBRs allow less field penetration and therefore a very high total confinement 

factor for all four test cases, compared to analogous semiconductor DBR VCSELs. 

44.3 Resonant Wavelength, Total Optical Mode Loss, and Threshold Gain. Due 

to the absorbing layers, the eigenvalues of (4.10) are complex, and take the general form 

ii = kj = ^ = (ri + iqi)
2. (4.21) 

Here r^ and qi are the real and complex parts of the (total) propagation constant fa of mode 

i. From (4.21) I immediately recognize the mode resonance as 

A,- = —. (4.22) 

By definition, the fields vary harmonically as 

exp (iujit) = exp (ifact) = exp (irid) exp (—qict), (4.23) 

2This is a somewhat different definition than the more standard definition using the standing wave 

intensity {~\e0 However, the two definitions should yield similar results in most cases . 
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Figure 4.5     Transverse confinement factor verses oxide aperture radius for the fundamental 
lasing mode. The lines are cubic spline fits of the discrete calculation data. 
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Figure 4.6     Total confinement factor verses oxide aperture radius for the fundamental lasing 
mode. The lines are cubic spline fits of the discrete calculation data. 
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where the mode frequency is Re(w,-) = r^ and the total cavity loss rate (1/seconds) is 

li = qiC. These results describe a three-dimensional leaky cavity, losing energy at a rate of /,-. 

I would prefer to express my results in terms of the more familiar Fabry-Perot (F-P) laser 

model. To do this, I convert u>j to a complex propagation constant 

ßi = ^gain, (4-24) 

where * is the complex conjugate, required such that a lossy u>t- maps to a lossy /?,-. The 

imaginary part of ß{ gives the field loss rate (for Im(ft) > 0) in cm-1. Since energy is 

proportional to the square of the field, the intensity lost per unit length (a,-) is given by 

ai = 2Im(ßi). (4.25) 

In deriving a; all I have done is convert energy lost per time to energy lost per propagation 

length. To apply this loss rate to a "textbook" Fabry-Perot laser, the cavity length would 

have to be adjusted in accordance with the blueshift [26]. Finally, I calculate the threshold 

gain (gth) from the F-P lasing condition, 

IfW = on. (4.26) 

In Figures 4.7 - 4.9 I plot the modal resonance, total optical loss, and threshold gain 

as a function of oxide aperture radius for all four test VCSELs. The resonance results show 

the now familiar blueshift, with more and thicker oxide apertures yielding a larger shift. 

Interpretation of the loss and threshold gain curves is more complicated. I discuss these 

results, in detail, in Section 4.5. 

444 Cavity Q and Spectral Mode Width. From a;,- and a,-, I estimate the cavity Q 

and spectral half width at half maximum for each of the eigenmodes as [65] 

<fc,„  5*2>   =   * (4.27) 
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and 

SüJi tu \vpcxi\ = lm(wi), (4.28) 

respectively. This Sui estimate, along with the a;,- and a; results, may be used to estimate 

the discrete optical mode spectrum within a spontaneous emission rate calculation. This 

should yield results more accurate than the typical plane wave mode expansion, particularly 

for the case of highly confined VCSELs where the resonant modes deviate substantially from 

plane waves. To illustrate this application, I plot the eigenmodes for the 1A-1THIN VCSEL 

in Figure 4.10. Each of the modes has an associated field distribution which may be used in 

the emission rate equations3. 

44.5 Radial and Axial Mode Loss. To better understand the optical loss sources, 

I would like to divide the total optical mode loss (a,-) into a mirror loss (Q;j
imrrorM, due to 

emission out the ends of the VCSEL, and a diffraction loss f a(dift*ctl°I1)J; due to loss out the 

VCSEL side. To do this, I use conservation of energy and the relationship between a and 

the radiated power and stored energy [7], 

Pv 
a = (4.29) 

vpWv 

Here vp is the field phase velocity, 

Pv = ^Re iff   (Ex #*) ■ ds\ (4.30) 

is the total time averaged (real) power exiting the VCSEL (fly) through IV, and 

WV = WV + W$ (4.31) 

3Note that in some cases (not shown) the lasing mode (the mode with the smallest a*) does not have the 
longest wavelength. This is not a problem, since the longer wavelength, higher loss eigenmodes have very 
little spatial overlap with the gain region, and therefore will not contribute significantly to the emission rate. 
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is the total time averaged stored energy.   This consists of the electric and magnetic field 

energies, W^~\JII   £o£^a|^|2^' (4'32) 

and 

4 JJJüv 
W? = 7 ///    W H dv, (4.33) 

respectively. Equation (4.29) is derived from the relationship between cavity Q and loss rate, 

adapted to the F-P laser model. I find in practice that numerical application of (4.29) gives 

results exactly matching those obtained with (4.25), verifying the general approach. It is 

then a simple matter to break a. into radial and axial components, 

^(diffraction) _      PS (4-34) 

vpWv' 

and 
^(mirror) = PT + Pß ^g^ 

VpWy 

Here 

PV = PS + PT + PB, (4.36) 

breaks the total power exiting the VCSEL into that leaving through the side (Ps), and that 

leaving through the top and bottom surfaces (PT) and {PB), respectively. These powers are 

calculated by restricting the integral in (4.30) to the corresponding surfaces. Note that for 

these calculations, I assume the VCSEL materials are lossless and calculate "cold cavity" 

radiative loss parameters. Although absorptive loss may be significant in operating VCSELs, 

this calculation should give a good estimate of the diffraction loss. The calculation can be 

easily modified to fold in absorptive losses if required. 

In Figures 4.11 - 4.13, I plot the radial mode loss, the axial mode loss, and the radial 

percentage of the total mode loss, respectively. Comparing the scales in Figures 4.11 - 4.13,1 

see that ö:(mirror) is relatively constant, and that most of the change in a with aperture radius 

is due to cx^aTa,ctlon\ This is not surprising, since I expect the change in mirror reflectivity 

to be relatively small and the diffraction to increase as the aperture size decreases. 
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Figure 4.11     Radial mode loss verses oxide aperture radius for the fundamental lasing mode. 
The lines are cubic spline fits of the discrete calculation data. 
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Figure 4.12     Axial mode loss verses oxide aperture radius for the fundamental lasing mode. 
The lines are cubic spline fits of the discrete calculation data. 
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Figure 4.13     Percentage of the total mode loss due to radial losses for the fundamental 
lasing mode. The lines are cubic spline fits of the discrete calculation data. 
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4-5   Diffraction Mechanisms 

By examining the loss characteristics for each VCSEL design, I may deduce the physical 

mechanisms governing diffraction. My results support the idea that diffraction may be viewed 

as a coupling between the bound eigenmode and the continuum of parasitic modes [19]. 

These are radially propagating slab modes in the unapertured (cladding) region. Deppe 

explains in [21] that for a cavity bound by perfectly conducting mirrors, the parasitic mode 

density will resemble a slanted staircase following the three dimensional density of modes. 

The jumps in the staircase occur at each vertical resonance in the cladding region. Deppe's 

results suggest that shorter cavities are superior since the eigenmode overlaps with a smaller 

density of parasitic modes. This idea is illustrated in Figure 4.14. 

For my high contrast DBRs, I expect very similar behavior to this ideal mirror case. 

Comparing the threshold gains of each structure (Figure 4.9), the A/2 cavity threshold is 

consistently lower than all the 1A cases. Moreover, comparing the percentage of the total 

mode energy lost to diffraction (Figure 4.13), the A/2 VCSEL is again superior. These results 

can't be attributed to transverse confinement, since the A/2 VCSEL has the smallest Ttr of 

all four cases. However, these results could be attributed to the larger total confinement 

factor (Figure 4.6), or to a smaller density of parasitic modes interacting with the A/2 

cavity eigenmode. It turns out that these two factors are closely related: the longitudinal 

confinement factor—or effective cavity length in the cladding region—determines the location 

of the steps in the parasitic mode density (Figure 4.14). 

Adopting Deppe's parasitic mode density interpretation, I can explain the difference in 

threshold between the A/2 and 1A cavity VCSELs, but I cannot easily explain the disparity 

among the three 1A cases, which should have very similar parasitic mode densities. Further- 

more, the parasitic mode density is solely a function of (effective) cavity length, and therefore 

cannot address radius-dependent changes in diffraction. To capture these radius-dependent 

effects, and to distinguish the various 1A cavity structures, I propose that the diffractive loss 

is a function of both the density of parasitic modes and the coupling strength between the 

eigenmode and the parasitic modes.  Moreover, this coupling strength is a function of two 
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Figure 4.14 Illustration of the "slanted staircase" parasitic mode density. The density 
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factors: (1) the relative alignment of the eigenmode and parasitic mode propagation vectors, 

and (2) the eigenmode penetration into the cladding region. 

The 1A-1THIN VCSEL exhibits the lowest threshold and the lowest diffraction loss 

(Figure 4.11) of all three 1A VCSELs. Because of the weak transverse confinement (Fig- 

ure 4.5) and the resulting mode spread, the field in this structure is more planar and the 

propagation vector is paraxial with respect to normal to the planar interfaces. As a result, 

the eigenmode wavevector is nearly orthogonal to the parasitic mode wavevectors, which lie 

principally in the plane of the layer structure. The parasitic mode wavevectors can have 

components out of the plane, but the larger these components are the less energy they will 

carry away in the radial direction. I attribute the low threshold for this design to this 

misalignment between the eigenmode and parasitic mode wavevectors. This hypothesis is 

further supported by the peculiar results for the double-apertured 1A-2THICK VCSEL. 

The double-apertured VCSEL has the largest transverse confinement factor of all three 

1A cavity VCSELs. Using the weighted index method [50], I showed that this transverse 

confinement has two primary effects: 

1. It confines the mode energy within the aperture region. 

2. It causes the eigenmode propagation vector to tilt away from normal to the DBRs. 

The first effect acts to decrease the parasitic mode (or diffractive) loss by containing 

the mode energy, while the second acts to increase it through stronger coupling (better prop- 

agation vector alignment) to the parasitic modes. These processes compete, and, depending 

on VCSEL design and aperture radius, either effect may dominate. For the 1A-2THICK 

VCSEL, the transverse confinement is > 0.95 for aperture radii from 1.0 to 0.6 /mi; for these 

radii, the first effect dominates. However, somewhere between 0.6 and 0.4 ßm enough mode 

energy exists outside the oxide aperture such that the strong parasitic mode coupling causes 

the optical loss to rapidly increase. In essence, the cavity in the unapertured region (p > pox) 

forms a waveguide whose source is the lasing eigenmode. When the eigenmode penetration 

into the waveguide region becomes large enough, the waveguide appears to "siphon" energy 
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away from the eigenmode. This effect is clearly illustrated in the plots of |£^| for the 0.6 

and 0.4 //m cases in Figures 4.15 and 4.16, respectively. 

In this chapter, I have ascertained the physical mechanisms governing diffraction in 

oxide apertured VCSELs. The diffraction is well described by the parasitic mode picture. In 

the next chapter, I augment my weighted index method to perturbatively include coupling 

to the parasitic modes. The result is a fast, semi-analytic method for estimating all the 

relevant optical laser parameters for microcavity VCSELs. 
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Figure 4.15      \E$\ for the 1A-2THICK structure with oxide aperture radius pox = 0.6 (im. 
The background intensity has been set to white to increase contrast. 
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Figure 4.16 |E^| for the 1A-2THICK structure with oxide aperture radius pox = 0.4 /xm. 
Note the field leakage into the waveguide formed by the oxide apertures and 
the cavity. The background intensity has been set to white to increase con- 
trast. 
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V.   Diffractive or Parasitic Mode Loss 

"Things should be made as simple as possible, but not any simpler." 

... Albert Einstein 

The weighted index method applied to the vector Helmholtz equation is a powerful 

tool for analyzing the optical properties of azimuthally symmetric, but otherwise arbitrarily 

complex VCSELs. From this simple variational model I was able to predict the lasing mode 

blueshift, confinement factors, spatial field profile, and mirror and absorption losses. This led 

to the discovery of a new phenomenon, a polarization dependence of the mirror loss due to 

the change in the DBR reflectance with aperture radius [52]. This effect is well documented 

in edge emitters but had not previously been predicted or observed in VCSELs. The reason 

it hasn't been observed results from the fact that—for the current VCSEL state-of-the-art- 

diffraction is the dominant loss mechanism. It is orders of magnitude larger than the change 

in mirror loss in the regime where the DBR polarization dependence is significant. 

In the last chapter, I was able to ascertain the fundamental physical parameters de- 

termining diffraction loss in apertured VCSELs. The results suggested that the parasitic 

mode concept proposed by Deppe [21] accurately depicts the diffractive loss. In this chapter 

I present a new perturbative technique for incorporating the parasitic modes and calculating 

diffractive loss within the WIM formalism. 

Since the change in reflection with radius is the only polarization dependent effect 

observed for the vector WIM, and since the resulting change in mirror loss is much smaller 

than the diffraction loss, I simplify my WIM implementation to a scalar solution using the 

well established linear polarization (LP) approximation. LP modes are much simpler in 

form and yield a much more robust and rapid calculation: roughly a factor of two faster 

than the full vector WIM for HEM modes. This increased efficiency comes with virtually 

no degradation in accuracy. Furthermore, the simpler form of the LP modes facilitates 

my diffraction calculation, which requires rigorous coupling of the lasing modes to a set of 

resonant parasitic modes. 
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5.1    Linear Polarization Approximation for the Lasing Eigenmodes 

To solve for a hybrid (m ^ 0) mode in the full vector WIM, I must iteratively solve a 

2x2 TM, a 2 x 2 TE, and a 4 x 4 radial transfer matrix equation. Since mode convergence 

requires convergence of the resonant wavelength and threshold gain for all three equations, 

the HEM mode calculation is significantly slower (by roughly an order of magnitude) than 

pure TE and TM mode calculations. Furthermore, despite the fact Az and Fz are separable, 

the HEM field components are not, requiring a non-trivial sum of Az and Fz contributions. 

Based on the importance of the HEM modes—the HEMu mode is the fundamental lasing 

mode—it would be convenient if a simpler technique could be derived for calculation of these 

modes. I do this using the linearly polarized (LP) mode approximation, originally applied 

to the weakly guiding fiber. 

The LP modes are an approximation to the full waveguide modes in the limit of 

vanishing difference between core and cladding index of refraction. Equivalently, the LP 

modes are the scalar modes of the cylindrical waveguide. Most often, the LP modes are 

derived by assuming e™Te « s^ within the fiber-optic eigenmode equation [58] 

•£(«) + KH 
uJn(u)     wKn(w)_ 

<OTe   J'n («)    +    K («0 
ef&AuJn{u)     wKn(w) 

n2(— + — ] [£LÜ—+ — 
\u2     w2) \efadu2     w2, 

(5.1) 

where u = kcoiea, w = kd^a, and a is the fiber radius. This assumption simplifies (5.1) to 

the LP eigenmode equation 
uJ'm (U)  = wK'm M /K öl 
Jm(u)        Km{w)' K'} 

which is equivalent to enforcing continuity of the scalar field and its first derivative at p = a. 

The azimuthal index m ^ n because the LP modes describe the Cartesian/scalar field com- 

ponents, while the exact fiber-optic modes are given in cylindrical components. Furthermore, 

within the basic1 LP mode approximation Ez = Hz = 0. 

1As is the case with most perturbational techniques, several variations of the LP mode approximation 
exist. Some authors include z field components, by either estimating them from the in-plane Cartesian 
components [24] or by deriving the LP modes using a power series in A w (ncore — nc;a<j) /ncore and keeping 
higher order terms [70]. In any case, the basic approximation is the most popular and is quite adequate in 
most situations. 
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LP-mode Constituent Fiber Modes Deg eneracy 

LPoi HEMn 2 

LPu TE01, TM01, HEM21 4 

LP21 HEMn, HEM31 4 

LP02 HEM12 2 

LP31 HEM21, HEM41 4 

LPl2 TE02, TM02, HEM22 4 

Table 5.1     First six lowest order LP modes, their constituent cylindrical modes, and their 
total (polarization and azimuthal) degeneracy 

The LP modes are waveguide modes with no polarization effects included. Therefore, 

when the LP mode approximation is valid the constituent fiber modes are nearly degener- 

ate, sharing the same propagation constant and cross-sectional intensity distribution. For 

example, the LPu mode consists of the doubly degenerate HEM21 mode, and the TE0i and 

TM01 modes, all characterized by an intensity pattern with a single null at the center. Table 

5.1 lists the six lowest order LP modes, their corresponding cylindrical (fiber) modes, and 

their total degeneracy due to polarization and azimuthal field dependency: either sin (m<f>) 

or cos {m<j>) [58]. For VCSELs, I expect the same criteria will apply, and the LP approxima- 

tion should be valid for nearly degenerate modes. The vector WIM LPu resonance results 

(Figure 3.13) show very little splitting throughout the convergent range of the calculation, 

suggesting the validity of the LP approximation for this case. This conclusion is further 

supported by the DBR reflectance calculation which displayed a relatively small difference 

between modes over the entire span of radii investigated. Lastly, I note that the LP approx- 

imation is equivalent to a paraxial approximation, suggesting it should be most valid for the 

lowest order WIM modes. Overall, I suspect the error due to the LP approximation will be 

no worse than the error introduced by the fundamental separability assumption upon which 

the WIM is based. 

Proceeding with the "standard" LP modes, I write the lasing mode fields as 

E   «   Exx = F(p)G{z) cos (m<f>)x, (5.3) 

H   «   Hyy = —F(p)G'(z) cos (m<j))y. (5.4) 
Lüfl0 
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Here 

F{P)   =   {  ClJm(M    P<Pox   , (5-5) 
y c2Km (k2p)    p > Pox 

G(z)   =   aje^
z + bje-^% (5.6) 

and I have limited the geometry to two radial regions: core (p < pox) and cladding (p > pox). 

To solve for modes, I enforce continuity of the field and its first derivative at each axial and 

radial interface. The remaining analysis parallels the vector TE mode solution presented in 

Chapter II, with the exception that I now solve directly for the fields rather than the vector 

potentials. 

For the axial problem, I find roots of the TE threshold condition (2.43).   For each 

resonant mode, the ßj are found from the axial dispersion relation 

ßl = £('r*j) ~ (k)2- (5-7) 

Here {er-.F,j) and (k) are the weighted relative permittivity and radial propagation constants, 

respectively defined by 

,       i_<F\*r»j\F) (F\kf\F) 
(er-.Fj)^      (F|F)        and   {k) = y_^_-. (5.8) 

Since there can be no confusion with the polarization of the weighting functions for LP 

modes, no a superscript is required. It is then a simple matter to back solve the individual 

transfer matrices (2.37) to find the a,j and bj. For the radial problem I find the roots of the 

LP eigenmode equation (5.2). This is precisely the same as solving the radial TE threshold 

condition (2.60) for two regions. The core and cladding propagation constants are given by 

the radial dispersion relation 

*? = ^(er,,a) - (ß)2. (5.9) 
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Here (C^G) and (ß) are defined as 

. {G\eiJ\G)        ,   /m_     (G\fi\G) 
^'

G)
=     (G\G)       and   {ß) = i    (G\G)    ' (5-10) 

respectively. For each mode, the coefficients cx and c2 may be found by the field continuity 

condition. The axial and radial problems are alternately solved, iterating until both the 

resonant wavelength and material gain converge. The result of this analysis is a set of LP 

lasing modes, all bound in the radial direction and radiative in the axial direction. In order 

to capture diffractive effects I must augment these modes. I accomplish this by coupling 

each lasing mode to a set of resonant parasitic modes. 

5.2   Parasitic Modes 

To calculate lasing modes with the weighted index method, I enforce radiation condi- 

tions in the axial direction and evanescent decay in the radial direction to form constraint 

equations on the mode frequency and material gain. To calculate parasitic modes with 

the weighted index method, I relax the evanescent condition and allow for (outward) radial 

propagation. Alternatively, I may derive the parasitic modes as exact field solutions in the 

cladding region (p > pox). As I will show below, these two versions of the parasitic modes 

are equivalent. 

Since parasitic modes may propagate at any angle with respect to the planar interface 

normal (z), / do not make the LP approximation and instead solve explicitly for TE and 

TM cylindrical modes. By dividing the modes into TE and TM, they may be conveniently 

described by a single longitudinal field component: Hz for TE modes and Ez for TM modes. 

For HEM lasing modes, the relative strength of the TE and TM components was important 

in order to match the tangential field components across radial boundaries. But, for the 

parasitic modes there is no such requirement: I am only concerned with their behavior 

in the cladding region. Furthermore, the TE and TM parasitic modes each obey the axial 

boundary conditions on their own, implying they may be dealt with independently regardless 

of the azimuthal mode order. 
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Based on the azimuthal form of the LP modes, I choose2 

H™   =   P(p)Q(z)sm(n<j>), (5.11) 

£™   =   P(p)Q (z) cos (n<f>), (5.12) 

where 

p(p) m      *7 (M  ,<,.   _ (513) 

y c2H\   (k2p)    P > Pox 

Q{z)   =   ajeißi' + bje-ißJ'. (5.14) 

Since the TE and TM modes are dealt with independently, no polarization superscript is 

required, and I am free to use the same functions (P,Q) for EfM and H™. The choice of 

Ev
z 

M ~ cos (n<j>) and HfM ~ sin(re<^>) is necessary, due to azimuthal orthogonality, for the 

lasing mode to couple with the parasitic modes. For each lasing mode, I calculate a set of 

resonant parasitic modes following a procedure analogous to the first axial iteration of the 

TE/TM vector mode solution given in Section 2.4. 

To solve the axial problem, I must first calculate a set of weighted material parameters 

{er-.p,j)i found via 

<^i> = {Plp*p)P)- <5-15) 
Since the parasitic modes are radiative in the radial direction, the inner product over p 

(2.19), 
/•oo 

(P\P) = /    \P(p)\2pdp, (5.16) 
Jo 

will not converge. However, employing an appropriate limiting procedure, (5.15) will con- 

verge, and gives the material values in the cladding region, 

(er:Pj) = er:2,j. (5.17) 

2Note, to avoid excessive sub/superscripting, I have recycled the P and Q functions, redefining them from 
their original designation in Chapter II. 
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Similarly, the weighted radial propagation constant will equal the cladding value, 

(W^'f'f^- (5-18) (P\P) 

This implies that the parasitic mode solution obtained via the WIM procedure is precisely 

the same as the exact cylindrical mode solution in the cladding region. The dispersion 

relation for the axial problem is 

^eT..%j = kl + ß). (5.19) 

Since I am looking for parasitic modes resonant with a particular lasing mode, I set 

w = u>lase and solve for the complex k2 roots of the axial threshold condition 

t22{k2) = 0. (5.20) 

Equation (5.20) is the same as the TE/TM threshold condition given in Chapter II (2.43), 

the only difference is the argument for which the roots are found. I allow k2 to be complex, 

rather than solve for a real k2 and KactiVe, since material gain does not apply to the parasitic 

modes. The source of the parasitic modes is the lasing mode. Furthermore, the complex k2 

term compensates for the axial radiation of the parasitic modes. As I will show in Section 

5.4, the Im(fc2) has no impact on the energy carried away from the lasing mode. Since this 

energy "siphoning" is the only effect I am after, I allow k2 to be complex as a matter of 

practical convenience in my root search algorithm, ignoring the lm(k2) for all subsequent 

calculations. 

Once (5.20) is solved, I could continue with the WIM procedure and solve the radial 

problem, determining weighted (ß) and (er-.i,Q), and finding the kx and c\ that satisfy the 

radial TE/TM (or HEM) boundary conditions. However, these results will have no bearing 

on Q (z), implying the axial solution is uncoupled from the radial solution. Moreover, these 

results will have no effect on P(p) for p > pox, since k2 is completely determined by the 

axial solution (5.20) and the radial boundary conditions only give c\ in terms of c2 (i.e., one 

degree of freedom exists in the radial solution, typically this is used to normalize P(p))- As 
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I will demonstrate in Section 5.3, only the cladding region behavior is required to calculate 

the diffractive loss. Therefore, for each parasitic mode I only solve (5.20) and ignore P(p) 

for p < pox, substantiating my earlier claim that TE and TM modes may be solved for 

independently. Based on this discussion, and to facilitate the following analysis, I simplify 

the parasitic mode definition to 

tf™   =   jy«(*p)Q(*)sin(nfl, (5.21) 

EPM   =   H& (kp)Q (z) cos (ncß). (5.22) 

Here k = k2 from (5.13), and the fact that these only apply for the cladding region is im- 

plicitly understood. An illustration of the standing wave intensity profile for a TM parasitic 

mode is given in Figure 5.1. 

5.3   Lasing Mode-to-Parasitic Mode Coupling 

The WIM lasing modes are not eigenmodes of the non-separable VCSEL cavity, but 

are instead a product of (one-dimensional) eigensolutions of the weighted axial and radial 

problems. One could envision a separable cavity with er(p,z) = er(p) + er(z) for which 

the WIM lasing mode was a true eigenmode. In this case, each WIM lasing mode would be 

independent and exact, and there would be no mechanism for coupling to the parasitic modes. 

This may in fact be a viable new design approach. Theoretically, if such a device could be 

fabricated, the (WIM) lasing modes would suffer no diffraction loss. An illustration of this 

type of device is shown in Figure 5.2. The diffraction or parasitic mode loss results from the 

non-separability of the VCSEL structure3, which effectively couples the lasing mode to the 

parasitic modes. To calculate this coupling, I employ two basic electromagnetic theorems: 

surface induction and reciprocity. 

3In analogy to quantum optics theory, the WIM lasing mode and the resonant parasitic modes are "bare" 
field modes. The true three-dimensional, lossy cavity modes are "dressed" field modes. The coupling between 
the WIM lasing mode and the parasitic modes determines the weighting coefficients of the various bare modes 
in the representation of a single dressed mode. 

5-8 



3 4 
Z(fim) 

Figure 5.1     Illustration of the standing wave intensity profile for a TM parasitic mode. 
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\£r:*T^'&¥:pX\ 

er:z6 + £r:pl 

£r:z4 + ^r:pl 

®K«a|ÄSr:pl1 

st:z2 + er:pl 

i^r^i'^-^rrpl-] 

er:z7 + st:p2 

Sr:z6 + er:p2 

| er:z5 + &r:A2 

er:z4 + er:p2 

\ £r:z3 + £r:/?2 

£r:z2 + ^r:p2 

Sr:zl + Sr:p2 

Figure 5.2 Illustration of an azimuthally symmetric, separable VCSEL geometry. The 
change in relative permittivity as a function of z produces the Fabry-Perot 
cavity structure. The change in relative permittivity as a function of p defines 
the lasing modes analogous to fiber-optic waveguide modes. If such a VCSEL 
could be fabricated, theoretically the lasing modes would suffer no diffraction 
loss. 

5-10 



5.3.1 Surface Induction. For the first step in my coupling calculation, I derive 

fictitious electric (feA and magnetic \.Meq\ surface currents in the cladding region (p > 

pox). These currents replace the eigenmode in the cladding region and act as a source for 

the parasitic modes. The sole purpose for performing this substitution is to mathematically 

isolate the parasitic mode fields from the eigenmode fields, making it much easier to solve 

for the coupling strength to each parasitic mode. It is crucial to realize that all I am 

doing is restating the field problem in a different, but equivalent, form. The combination 

of the currents and the parasitic modes in the cladding region is exactly equivalent to the 

real electromagnetic problem involving the eigenmode and parasitic modes. The surface 

induction theorem4 [7] describes how to represent the fields with equivalent currents. 

To derive equivalent currents, I assume the total field in the core region (p < pox) is 

accurately represented by the WIM lasing mode, 

E™°(p,<f>,z)   «   E™(p<pox,<f>,z), (5.23) 

Hc™(p,<ß,z)   H   #™(p </»„,*,*). (5-24) 

In the cladding region, I assume the total field may be written as the sum of the lasing mode 

and the resonant parasitic modes, 

NpM 

£cla<W,*)   «   £WIM(/>> p0X,<f>,z) + Y,AiEfM(P> Po*,4>,*)> (5-25) 
i=i 

NPM 

&**(**, z)   «   H™(p> p0X,<f>,z) + Y,AlH?u(p> Pox,cf>,z). (5.26) 
i=i 

Here Npu is the total number of parasitic modes which couple to the lasing mode (includes 

both TE and TM parasitic modes) and A\ is the amplitude of the /'th parasitic mode. 

These assumptions are required for a "clean" electromagnetic problem but are otherwise 

not directly related to surface induction.    These fields constitute the "actual problem," 

4The inductance theorem is closely tied to the uniqueness theorem which states that the fields in a closed 
region are uniquely specified by the sources with the region plus the tangential field components on the 
boundary. 

5-11 



illustrated in Figure 5.3. In the actual problem, no sources exist and the total tangential 

fields are continuous across the p = pox interface. 

To apply surface induction, I consider the "closed" surface rciad which encompasses 

the cladding region volume5, 

Oclad = [Pox,oo] x [0,2TT] x [-00,00]. (5.27) 

Within Ociad, I replace the WIM eigenmode fields with the equivalent electric and magnetic 

currents. Therefore, in the "surface inductance equivalent problem," illustrated in Figure 

5.3, the total fields in the cladding region are given by 

NPM 

^rW,*)   =   Y/AlE?M(p>Pox,<f>,z), (5.28) 

#sclrW,2)   =   Y/AlHfM(p>p0X,<f>,z). (5.29) 

Here SI denotes surface inductance equivalent fields. 

In the actual problem, no currents exist and the fields obey the tangential field con- 

tinuity relations. In the surface induction equivalent problem, the equivalent currents are 

required to enforce continuity of the tangential fields. The electric and magnetic currents are 

defined by 

Jeq   =   n x (#core - i%iad) , (5.30) 

Meq   =   (ECOTe - E^d) x Ä, (5.31) 

where h is the outward normal to rciad. The difference in form between (5.30) and (5.31) 

is strictly due to convention. Since the lasing mode is evanescent in the cladding region, 

the equivalent currents are only non-zero along the boundary6 p = pox. Hence, the outward 

5 Here I have assumed that rciad may be closed at infinity, a common practice within theoretical 
electromagnetics. 

6Consistent with the general WIM procedure, I assume the currents go to zero for z > ztop and z < bottom, 
the upper and lower VCSEL boundary planes 
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normal n = —p and the equivalent surface currents are 

{NPM 

H™(P;X, *,z) - £ MPM(p > Pox, t, z) 

=   Hwm(ptx,<f>,z)xp, (5-32) 

£WIM(,c, <M - E Ai£P*(P > pox, M J * (-« 

=   ?xi™(^^). (5.33) 

Here p^ and p^. lie just outside and inside of rciad, respectively. 

Note that I could have represented the WIM eigenmode in the cladding region using 

equivalent volume currents. In this approach, the equivalent currents arise from the difference 

in the weighted material parameters—for which the WIM solution is exact—and the actual 

material parameters. Unlike the surface induction solution, there is no magnetic volume 

current, since p, = p0 everywhere. However, the electric current has both a p and a (f> 

component, and therefore couples to both the TE and TM parasitic modes. This approach is 

attractive, since it allows for an easier interpretation of the source of the parasitic mode loss: 

the difference between the weighted and real geometries. I chose to use equivalent surface 

currents, since they allow for an easier implementation and yield the same diffraction loss 

results. 

The surface induction picture is now complete: inside Ociad the total fields are given by 

the weighted sum of the parasitic modes ((5.28) and (5.29)), whose source is the magnetic 

and electric equivalent currents ((5.32) and (5.33)). The surface inductance problem, which 

is equivalent to the actual problem in the cladding region, is illustrated in Figure 5.3. All 

that remains is to couple the currents to the parasitic modes to find the amplitude (A/)—or 

coupling strength—of each parasitic mode. For this, I use reciprocity. 

5.3.2   Reciprocity. The reciprocity theorem is a simple rearrangement of the 

Maxwell curl equations using appropriate vector identities. It is commonly used in waveg- 

uides problems to calculate the coupling between two guides or the radiation from a source 

into a guide.   I employ reciprocity in a similar capacity, to compute the Ai coefficients. 
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A Actual Problem 

7*- /   Ecore 

E clad 

Surface Inductance Equivalent 

I M
e« 

Eclad 
SI 

jeq 

Hclad 
SI 

Figure 5.3 Illustration of the actual VCSEL electromagnetic problem (left) and the surface 
inductance equivalent problem (right). In the surface inductance problem the 
WIM fields in the cladding region, denoted by the dashed box, are replaced by 
equivalent surface currents Jeq (5.32) and Meq (5.33). The total fields in the 
cladding region in the equivalent problem, JEg1

I
ad and -fiTsiad; are given by the 

weighted sum of parasitic modes (5.28) and (5.29). 
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Reciprocity dictates that any two fields in the volume Ociad must satisfy 

// \ßa xHb-Ebx Ha} • d$ = Iff {Eb-Ja-Ea-Jb + Ha-Mb-Hb- Ma} dV. 

(5.34) 

For my application, I assign the a fields and sources to the surface induction cladding fields 

((5.28) and (5.29)) and equivalent currents ((5.32) and (5.33)). For the b fields, I use a 

fictitious "test" mode7: a single parasitic mode propagating radially inward. The test mode 

is a non-physical—since it propagates inward—parasitic mode, which otherwise obeys all of 

Maxwell's equations and the parasitic mode orthogonality relation (5.49). Since the strength 

of the parasitic modes is completely determined by the equivalent currents (and therefore, 

the eigenmode), I solve for TE and TM parasitic mode Ai separately, even for m ^ 0 modes. 

First, I consider the TE parasitic modes. I define the test mode or b fields (5.34) by 

H; = H^(k(p)Q((z)Sm(n(f>). (5.35) 

H~ is an exact duplicate of one of the real parasitic modes, with the exception that it travels 

in the opposite direction. To apply reciprocity, I assign [60] 

■NpM 

Ea   =   Eifd = J2AiETM' (5-36) 
/=i 

•NpM 

Ha   =   Hifd=Y,AiH?U, (5-37) 

Ja = Jeq, (5.38) 

Ma = Meg, (5.39) 

Eb = E-, (5.40) 

Hb = H-, (5.41) 

j* = 0, (5.42) 

Mb = 0. (5.43) 

7The use of a "test" mode is standard practice in waveguide solutions; see, for example, [60]. 
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Beginning with the surface integral in (5.34), I note that 

ds = {-p)poxd<i>dz (5.44) 

on p = pox.   Substituting in ds and performing the cross and dot products, the surface 

integral reduces to 
/•stop        i"2ir 

/ /    {E\Hl-ElR\}p0Xd4>dz, (5.45) 
•^bottom •'0 

assuming the surface region [0,2ir] x [bottom, ^toP] is the only region contributing to the 

integral8. Calculating E% and E^ via Ampere's law, (shown here tailored for TE modes) 

E*(p,*,z) = ^{-fpH,(p,<l>,z)y (5.46) 

yields 

4   =   ^W(kfp)Qf(z)Bm{n<l>), (5.47) 

NPM 
E%   =   E^^^CM^C^M). (5.48) 

i=i 

where ' denotes differentiation with respect to the argument. Before proceeding, I make the 

crucial assumption that the parasitic modes are orthogonal, obeying the relation 

[[ {EaxHb}ds = 0   for   a ^ b. (5.49) 

Equation (5.49) sifts the / = / mode out of the summation (5.48), reducing the surface 

integral (5.45) to 

-A(^f^W(k(Pox) r   [Qi{z)fdz. (5.50) 
i •'^bottom 

8This assumption may be justified by including a very small amount of absorption in the cladding region, 
such that the parasitic modes go to zero at infinity. 
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Here W (z) is the Hankel function Wronskian denned by [1] 

W (z) E, H% (z) HP (z) - itf > (z) H^ (z) = =£, (5.51) 

and the azimuthal integral equals ir. Finally, substituting in (5.51) and rewriting the integral 

over z in Dirac notation gives 

fj {E° xHb-Ebx H*} ■ ds = -ApjgS- ( Q(\Q() , (5.52) < £j~ x w — ft' x n - > • as = —A 

Tclad 

where the ^~~" indicates the inner product is unconjugated. 

Turning now to the right hand side of (5.34), I begin by noting that the LP modes 

have no z field component. Therefore, the effective currents calculated in (5.32) and (5.33) 

will be strictly z directed. Furthermore, Jeq and Meq are surface currents, non-zero only on 

the boundary p = pox, reducing the volume integral in (5.34) to a surface integral. Making 

these simplifications, the right hand side of the reciprocity relation (5.34) becomes 

- /    Hb
zM:Poxd<f>dz, (5.53) 

•'«bottom •'0 

where the only coupling occurs through Meq (conversely, the TM parasitic modes will only 

couple through Jeq). Explicitly calculating the magnetic current due to the LP lasing mode 

gives 

Mtq   =   z-{pxx) F(p)G(z) cos (m<ß) 

=   IF(P)G(Z) [sm((m-l)<f>)-sin ((m + l)<f))]. (5.54) 

Substituting Me
z
q and H~ into (5.53) yields 

JJJ {Eb • r -H».M°}dV = -P-fF{Pox)HP (kiPox) ( G\Q{) $TE (J>). (5.55) 
ficlad 
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Here 

$TE(<£)   =    /    [sin((m-l)^)-sin((m + l)^)]sin(n^)<fy 
Jo 

=    < 

—27T        m = 0, n = m + l 

—7T m>l, n = ra + l   , (5.56) 

7T ra>l, n = ra — 1 

determines to which parasitic modes the lasing mode will couple. Setting the left hand side 

(5.52) equal to the right hand side (5.55), and solving for the coupling constant gives 

TTBO    (G\Q{) 
AfE =  /"    ^F(pMtf (kiPox) [^(m_1} - tfB(m+1) (1 + 8m0)} . (5.57) 

8u}fi° (Qi\Q() 

Here I have replaced $TE (<f>) with the corresponding sum of Kronecker delta functions (<Sa&), 

and added the TE superscript on A( for clarity. 

To calculate the TM parasitic mode coupling coefficient, I use the same a fields but 

consider a radially inward propagating TM mode for the b fields in (5.34), 

£; = ftf>(V) <&(*)«»(«#• (5.58) 

Following an analogous procedure, I apply reciprocity using the same field assignments given 

in (5.36) - (5.43). For this case, the surface integral is given by 

/ /    {Ea
zE\-Eh

zEl} Poxd<j>dz. (5.59) 
•'•^bottom «'O 

Calculating Hi and H\ via Faraday's law, (shown here tailored for TM modes) 

Hi(p,4>,z) = ^^ \^-Ez{p,4>,z)} , (5.60) 
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yields 

NPU 

Hl   =   -£4^itf>'(Ma(*)«»W). (5.61) 
?wf0fr zr(2)l , 

1=1 ' 

Hi   =   zi^HW>{k.p)Qi{z)cos{n<f>). (5.62) 

Substituting the fields into (5.59), and minding the orthogonality relation, gives 

//     (i- x H» - E» x H°\ ■ ds   =   Ar£0P°l{1 + 6n0)W(kiPox) H   er [Qf(z)f dz 

= A/^(g/lZT^)(i + M- (5-63) 

The TM volume integral couples the parasitic modes to the electric current, 

/•«top fin 

/ /    E\j:Poxdi>dz. (5.64) 
•'«bottom •'0 

Explicitly calculating the current due to the LP lasing mode gives 

J«9   =   2.(yxp) —F(p)G'(z) cos (m<f>) 
UHQ 

F(p)G'{z) [cos ((m - 1) <j>) + cos ((ro + 1) cf>)}. (5.65) 

Substituting Je
z
q and E~ into (5.64) yields 

JJj {& ■ J* -Hb-Ma}dV = -£jLF(Pox)HP (kiPox) ( G> | Qt) <D™ (fl, (5.66) 
ficlad 

where 

i>27T 

$™(<£)   =    /     [cos((m-l)^) + cos((m + l)^)]cos(n$<ty 
Jo 
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27T        m = 0, n = m + 1 

7T m > 1, n = m + l 
(5.67) 

27T        m = l, n = m — 1 

7T ra > 1, n — m — 1 

Setting the left hand side (5.63) equal to the right hand side (5.66), replacing $™ (<j>) with 

the corresponding sum of Kronecker delta functions, and solving for the coupling constant 

gives (5.68), 

6n(m+l) (1 + ^mo) + ^n(m-l) (1 + ^ml) 

1 + SnO 8u>Wo / Q. | £r | g A 
(5.68) 

The appearance of H^ (k(pox) in (5.57) and (5.68) is at first disconcerting.   One would 

assume the form of the test field would have no influence on the coupling.   However, the 

analysis is not yet complete. To have any physical meaning AjE and A™ must be applied 

to the parasitic modes and the resulting radiative loss computed, as I show below. 

5.4    Parasitic Mode Loss 

The ultimate goal of the parasitic mode analysis is to determine the change in threshold 

gain from the WIM value due to diffraction. To do this, I define diffraction loss as the 

eigenmode power coupled to the parasitic modes and radiated in the transverse direction. 

In the WIM solution, the calculated threshold gain (#^IM) compensates for the ab- 

sorption  (absorption)) an(J mjrror ^(mirror)) \osses^ 

g™ = _L ^(absorption) + a(mirror)j ^ (5>6g) 

where rtot is the total confinement factor.   The total threshold gain, on the other hand, 

incorporates the absorption, mirror, and diffraction (a(diffractlon)j losses, 

gth = _L {^(absorption) + ^(mirror) + Q (diffraction)} _ ^JQ) 
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As shown in Section 4.4.5 (4.29), the losses may be written in terms of the power dissipated 

^(absorption)^ p(mirror)? p(diffraction)^ the total stored field energy (We + Wm), and the phase 

velocity (vp) [7] as 
n(source) 

«(source) =    ,w MW v (5-71) Vp (We + Wm) 

where source = absorption, mirror, or diffraction. By substituting the expressions for g™lu, 

^(absorption)^ a(mirror)? ancj ^diffraction) into ^ an(j rearranging, I may write the total threshold 

as 
(p(diffraction) \ 

i j £  ] C5 72) 
'   p(absorption)   i   p(mirror) J ' \   •      J 

Equation (5.72) gives the perturbative adjustment to the WIM threshold gain required to 

capture diffractive loss9. The only remaining task is to calculate the three dissipated power 

terms. 

To find the power terms, I follow a procedure similar to the one presented in Section 

4.4.5. In this approach, I assume the total threshold gain compensates for the total power 

exiting the cylindrical volume of the VCSEL core, 

0core = [0,pox] X [0,27r] X [^bottom, -Stop], (5-73) 

either through absorption or radiation out the ends or the side. The power absorbed due 

to material loss (for example, free carrier losses) results directly from the imaginary part of 

the field energy distribution. For a lossy region, er is complex and the total (time averaged) 

power absorbed from the electric field is given by 

p(absorption) = _ *    fff £Q jm (^   ^WIM 2 ^ (574) 

"core 

where the Im(er) < 0 for absorption. There is no corresponding magnetic field term since 

ß = nQ throughout the structure. Substituting in the explicit form for the LP mode (5.3), 

9In the derivation of (5.72), I have implicitly assumed that the parasitic modes only contribute to 
pCdiffraction)^ an(j that the absorption and mirror loss are well described by the WIM results. 
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p(absorption) -g gjven m Dirac notation as 

p(absorption) = _™o (F | F )core (G | Im(er) \G) (l + 6m0). (5.75) 

Here 
[■Pox 

(F\ Flor* = 1*1 V* (5.76) 

is the standard inner product over p in the core region, and (G\ Im(er) |G) is found via 

the standard inner product over z (2.26). The two radiated power terms are calculated from 

the (time averaged) integrated Poynting vector, 

p (radiation) __ _ T>„ If (E x #*) ■ daj , (5.77) 

where the * indicates the complex conjugate. For the mirror loss, the fields are the WIM 

lasing mode fields and ds = ±zpd<f>dp: + for the top surface, and - for the bottom. 

Substituting in the LP modes gives 

P^a0t)   =   -^T0
{F{Fl™RC [i° {Zt°p) {G'{Ztop)r] (1 + Sm0)' (5'78) 

P^on?     =     ^ < F I F )core **  [«? (bottom) {<? (bottom)}*] (1 + <M , (5.79) 

„„ J   p(mirror) _  p(mirror)   ,    p(mirror) 
ana r^ — i-top       -t- -^bottom • 

For the diffraction loss, the fields in (5.77) are the parasitic mode fields and ds = 

ppd(j)dz. The unconjugated parasitic mode orthogonality relation (5.49) is general10, and 

is equally valid in the conjugated form. As a result, I neglect the cross terms and pull the 

summation of modes outside the integral in (5.77) to give 

p(diffraction)     =     J- £ | ^ |2 Rg      / / ^PM x  ^yPM^   ^. p p dz d(j) 

10The conjugated form of the orthogonality relation holds for nonabsorbing materials. The unconjugated 
form holds for nonabsorbing and absorbing materials. This implies the unconjugated form is a more general 
form, encompassing the conjugated form. See Chapter 31 of [70] for a detailed discussion of the relationship 
between the two forms. 
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*2S N?% 

= Ep™ + Ep™ 
/=i /=1 

(5.80) 

where NPM = ^PM + ^PM • For the TE parasitic modes the integral kernel is E^f (Hff)*. 

Substituting in the TE parasitic mode fields given in (5.21) and (5.46) yields 

pTE _ I 4TE|2 ™/j,0pox fx     — |/i,    | -        n,e ^'{hPox){H^{hp0X)Y (Qi\Qi) (l-M-     (5-81) 

Substituting in (5.57) for AjE gives 

P,TE   = 
K3\k\4p3

0X Im 
-1 

128 u>p0 

(G\QI) 
) , { F(p0X)Hi1] (kPox) 
(QilQi 

H^{hPox){H^{klPox)Y (QHQ()(1-M    (5.82) 

[^n(m-l) - £n(m+l) (1 + ^mo)]    • 

Here I have used the identity Re (z) = Im (iz). Similarly, for TM parasitic modes the integral 

kernel is -E^f (#£}*)*, where E™ is given in (5.22) and #JM is found via Faraday's law, 

H,(P^z) = -^[§-pEa(p^z) 

Substituting the TM parasitic mode fields into (5.80) yields 

pTM = | ATM |2 ™|/V Re    ^jy« {hpox) {HW, (hpox)y ( Qi | £* | Ql } 

(5.83) 

(1 + M- (5-84) 

Substituting (5.68) for AjM gives 

pTM    = Im *3\k\4pl 
128 (üjfi0)

2oüe0""[^ 
hHi2)(kiPo*){Hi2)/(kiPox)Y(Qi\e;\Qi) (5.85) 

(Qt\er\Qi 
F{PoX)H^ (klPox) [^n(m+l) (1 + ^mo) + ^n(m-l) (1 + "5ml)]    • 
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I now have all the elements required to calculate the diffraction loss contribution to the total 

threshold gain. To gain a better physical insight into the diffraction effects, it is useful to 

first interpret the TE and TM diffraction power terms. 

P,TE and P,™ may be simplified by approximating the Hankel functions with their 

asymptotic forms, 

and   Hi2\z)~ Hi%) 
yß yß 

(5.86) 

Substituting into the two TE terms gives, 

Im -j±HW'(klPox){HW(klPox)y Im 1  /. 1 e-ikiPox   [ e-*hPox 

h V       ZkPoxJ y/hPox [y/kPo 
e2lm.(ki)pox 

\tfPox\ 

\kfpox\ 

Re (k) - 
Re (ki) Im (k, 

MPo 

al 
(5.87) 

and 

\HU {klPox)\
2 * e 

-2Im(fc;)p0 

IkPo 
(5.88) 

The exact same result is obtained for the two TM terms. Plugging these results into P,TE 

and P,™ yields 

Pi 
TE 7T3 Re (k) pc 

128 a;/i0 
(Qi\Qi) 

{G\QI) 

(oi\Qi 
F{Pox) 

X (1 - Sn0) [f>n{m-l) - <$n(m+l) (1 + f>mo)\    , 

->TM ^^"(O.IH.MIO,) 
128 {wpo) OJSQ 

(G'\QI) 

Qi\er\ Qi) 
TF(P0X) 

X  [#n(»n+l) (1 + <5mo) + ^n(m-l) (1 + ^ml)]    • 

(5.89) 

(5.90) 

From (5.89) and (5.90), the role of the p and z functions becomes more clear. The Hankel 

functions effectively cancel, assuaging my earlier concern that the results may be incorrectly 
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influenced by my choice of "test" function (■Hn1)) • The only remnant of the radial parasitic 

mode functions is the Re (k) term, which is a normal weighting term in the Poynting vector11. 

Moreover, this supports my earlier thesis that the Im (k) does not affect the radiated power 

calculation. 

The F(pox) term weights the power by the lasing mode penetration into the cladding 

region, thereby explicitly incorporating the confinement factor. The axial inner products give 

an intuitive weighting factor due to the parasitic mode overlap with the lasing mode. Note 

that there is no need to normalize the parasitic modes, since any constant factor will cancel 

in the radiated power expressions. Similarly, the same comment holds for the lasing mode, as 

evidenced by (5.72). This is only logical: any normalization just scales the mode amplitude. 

Finally, the constants and delta functions are simply dimensional scaling factors necessary to 

couple the various LPm lasing and TE„/TMn parasitic modes. In the next chapter, I apply 

this approach to calculate threshold gains (Figure 6.3) and currents in actual VCSELs; I 

find the results agree qualitatively with experiments [33]. 

nThis can be understood by considering a plane wave:  E ~ e 8    , H ~ ^-e %kz, which implies the 

Poynting vector S ~ ^|-. 
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VI.   Spontaneous Emission and Laser Analysis 

Ultimately, an optical analysis is incomplete until it is coupled to a semiconductor gain 

model to calculate measurable lasing parameters. These are: light verses current, threshold 

current, and the percentage of the total spontaneous emission that couples into the lasing 

mode (/?). In this chapter, I combine my weighted index LP mode calculation—including 

diffraction—with J.P. Loehr's gain model [42] to calculate the laser operating characteristics 

for a low threshold VCSEL [33] structure for various oxide aperture radii. 

To estimate the spontaneous emission properties, I compute a set of three-dimensional 

cavity eigenmodes. For each mode, I find the energy (fko), spatial field profile lE(r)L 

confinement factor (rtot), and threshold gain (gth). These modes are then applied to a 

new spontaneous emission model, tailored to incorporate the partial transverse confinement 

afforded by oxide apertures. In past approaches, the optical modes were either dealt with 

as a two dimensional continuum [10,18,44,75], which is appropriate for VCSELs with no 

transverse confinement, or as a discrete set of modes of a fully enclosed three-dimensional 

cavity [4,5,73,77], which is most relevant for etched posts. Since the oxide aperture only 

results in partial transverse field confinement, I model the mode structure as the median of 

the two extremes. I use a discrete mode sum, due to the WIM eigenmodes, superimposed 

on a background two- and three-dimensional density of (plane wave) modes to represent 

the complete set of photon states which interact with the gain media. This is analogous to 

modeling the continuum states of a quantum well as a three dimensional density of states 

plus a discrete set of resonances. 

Steady-state light verses current curves are calculated by solving the photon and car- 

rier multimode related rate equations using the LP eigenmodes, Loehr's gain model, and 

the spontaneous emission results. By extrapolating these curves, the threshold current is 

estimated and compared with measurement. 
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6.1 Test Structure 

I perform the lasing mode analysis on the University of Texas's semiconductor-dielectric 

composite 980 nm VCSEL [31,33]. The A/2 cavity is formed by Alo.97Gao.03As surrounding 

a single 80 Ä In0.2oGao.8oAs quantum well sandwiched between pairs of 100 Ä GaAs and 100 

Ä Alo.e7Gao.33As barrier layers. The lower DBR is a 26 period n-type GaAs/AlAs DBR. The 

top DBR is a post-growth electron-beam deposited 5 period CaF-ZnSe dielectric DBR. A p+- 

GaAs quarter wave cap layer is included between the cavity and the upper dielectric DBR for 

electrical contacting. The entire structure and the standing intensity pattern are illustrated 

in Figure 6.1. In my model, I used n = 1.35 and 2.54 for CaF and ZnSe, respectively. 

The index and free carrier loss data for the semiconductor materials are listed in Table 3.1, 

Chapter III. 

Circular apertures are formed in this VCSEL by oxidizing the top Alo.97Gao.03As cavity 

layer. The fact the oxides lay within the cavity, a unique design approach, has been credited 

with the low thresholds obtained from this device. The nearness of the oxide to the quantum 

well suggests the aperture will have a strong impact on the emitted fields, making this 

structure an ideal test subject for my microcavity VCSEL analysis. 

6.2 Optical Modes 

Using the LP mode analysis of the previous chapter, I calculated the eigenmode data 

for the test VCSEL with oxide aperture radii ranging from 0.5 /mi to 4.0 /mi in 0.5 /mi steps. 

For each radius I found the pertinent optical mode parameters for each discrete eigenmode. 

In Figures 6.2 - 6.4,1 plot the mode energy, radial confinement factor, and threshold gain for 

the LP01 and LPn eigenmodes as a function of aperture radius. The longitudinal confinement 

factor is roughly 0.02 for all cases. 

As I have now come to expect, the mode energy blueshifts and the transverse confine- 

ment decreases with decreasing aperture radius. The higher order modes are less confined 

and blueshift more than the lower order modes. The order of magnitude and behavior of the 

calculated threshold gain with aperture radius is in good qualitative agreement with exper- 

iment. However, to determine the threshold current—the true threshold metric—I need to 
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Figure 6.1     Index and standing intensity profile for the University of Texas's low threshold 
A/2 cavity, dielectric DBR VCSEL. 
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Figure 6.2     LP0i and LPu mode energy vs radius. The solid and dashed curves are a cubic 
spline fit of the discrete data. 
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Figure 6.3     LP0i and LPn mode threshold gain vs radius. The solid and dashed curves are 
a cubic spline fit of the discrete data. 
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Figure 6.4     LPoi and LPn mode transverse confinement factor vs radius.   The solid and 
dashed curves are a cubic spline fit of the discrete data. 
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incorporate the eigenmodes with Loehr's quantum well gain results [42,43] into a full laser 

model. I do this in the next two sections. 

6.3   Spontaneous Emission 

Before I solve the related rate equations and compute the light verses current, I must 

calculate the spontaneous emission rate (RsP). To do this, I combine my WIM eigenmodes 

with Loehr's bandstructure and gain model. Spontaneous emission rates are then calculated 

using a new hybrid approach that combines emission into the photon continuum and emission 

into localized cavity eigenmodes. In both cases, the spontaneous emission rate is calculated 

using Fermi's golden rule [16,47]. 

To calculate optical emission and absorption rates, only transitions between the con- 

duction subbands and the heavy- and light-hole states are considered; transitions to and from 

split-off bands are ignored. The quantum well material gain for a cavity eigenmode (m) (not 

to be confused with the field azimuthal mode number) with energy fojjm and (approximate) 

plane polarization em is obtained using the standard single-particle gain expression [42] 

r     p.     v 47r2e2fi       1    Y> ko_ 
g{em,hwm)   - art,,,    (o-\ 2^ I A „roBW, x ncmlLfuom (2TT) ^ |^CB)(*o) _ ±E^\k0) 

x [/e(4
CB)(&0),/0 " fe(E^h)(ko)^v)} (6.1) 

1      /"27r 

Here 77 is the refractive index of the cavity, c is the speed of light, ra0 is the free electron 

mass, e is the electronic charge, L is the quantum well width, fe(E, fi) is the Fermi-Dirac 

occupation function for electrons with energy E and chemical potential fi, and k0 is defined 

by the energy-conservation condition 

EiCB\k0) - E^h\k0) = hwm. (6.2) 

6-7 



The optical matrix elements P^,(ko,<f>) are given by 

P^(kt)^     E     (/Sj/i'B))KIPl«cB) (6-3) 2_^        \JnktUn'      /\uj\ 
j=HHCT,LH° 

where 

The functions /1°B) and /ij) refer to the envelope functions for electron and holes, respec- 

tively, in the quantum well; the corresponding energies are E\ and E\ '. The conduction 

(fj,c) and valence (fiv) quasi-Fermi levels are set under high-level injection by forcing charge 

neutrality n = p in the undoped quantum well: occupation of the continuum states above 

the barriers is also included. 

The gain results are broadened by convolution with a 5 meV half-width Lorentzian 

lineshape function to obtain realistic gain spectra. Figure 6.5 shows the calculated material 

gain for plane-polarized (TE) modes. Since it is very difficult to calculate the exact peak 

gain wavelength, the peaks of the gain curves in Figure 6.5 are aligned with the energy of 

the lasing eigenmode by a-posteriori shifting of the gain spectrum. 

The spontaneous emission rate for coupling to a three-dimensional photon continuum 

of plane waves is given by [42] 

_    Arje2hio    1    Y^ ^o  

xfe(E<fB\k0),»c) [l - /e(4?L)(M,/ü] (6-5) 
XE E lh      d<t>\xrK:'>(ko,<l>)\2. 

Similarly, the spontaneous emission rate for coupling to a too-dimensional photon continuum 

for emission in the x — y plane, with the photon wavefunction localized to one wavelength 
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Figure 6.5     Material gain for an 80 Ä Ino.2Gao.8As/Alo.2Gao.sAs quantum well for various 
two-dimensional carrier densities (n). 
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along the z axis, may be calculated as 

iC>(M - Ä^ £ fco 

2m^c3(27r)^|^(CB)(^o)_^(HL)(fco) 

X/e(4CB)(M,//c)  [l - feiE^ikoUj] (6-6) 
1 />27r r 

±i (2TT) y0       
L 

Essentially, this represents an estimate of the spontaneous emission into all parasitic modes, 

whether or not they are resonant with the eigenmode. Since the transitions in strained 

quantum wells occur predominantly between heavy hole bands, and since z-polarized light 

does not couple to pure heavy-hole states, the two rates may be related by the approximate 

ratio 

^D)(M «j^£D)(M- (6-7) 

Finally, I consider emission into the localized cavity eigenmodes (m) calculated in 

Section 6.2. Since I have already expended great effort to compute the electric field profiles 

of these modes, it is most useful to express the rate in terms of the average electric field 

(Em(0)) at the center of the active region. In the dipole approximation, this rate can be 

calculated as 

W   -   ^l«')>l'£L„m„,\„m„, «»» 

x/,(£<OB)(*o), h) [l " /.(4"L)(*o), /<„)] (6-9) 

1 /"27r 

t^ (27r) ^ 
-2 Note that this transition strength depends strongly on the "volume" |(£TO(0))|~ of the cavity 

eigenmode (m): smaller cavities will more tightly confine the mode and result in stronger 

transitions. 
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The total spontaneous emission rate will be a combination of 3D, 2D and localized mode 

emission. I assume that 2D photons are always present, since the vertical layer structure 

supports many (parasitic) guided modes that emit radially. Also, I assume that the 3D 

photon continuum begins once the photon energy exceeds that of the highest-energy cavity 

mode, which I denote by ESQ. Thus, I approximate the total spontaneous emission rate as 

<°T)W = E<)+/      d(foo)Rl?\fa)+        <M^gD)(M- (6.10) 
TO J° JlS™ 

Here I have explicitly indicated that i^pOT* depends on the quantum well carrier concentra- 

tion n through the electron occupation function fe. 

6.4    Related Rate Equations 

The optical gain, spontaneous emission, stimulated emission, injected radiative current 

(«/rad), and carrier concentration are linked by the multimode related rate equations [11,42], 

^T   =   -[Tm9(emMm)-am]Sm-R^, (6.11) 
at T) 

5   =   ^--RSOT)(n)--y/rmg(em,f^m)Sm. (6.12) 
at e n •*—' TO 

Here Sm is the photon density inside the cavity for a localized mode m. Since the two-or 

three-dimensional continuum photons immediately leave the cavity after they are emitted, 

I assume that none of these can build up significant density. Because I consider very small 

cavity volumes, at most a few dozen localized cavity modes (m) are considered in (6.11) and 

(6.12). 

I solve these rate equations only in steady-state.   In this case, the left-hand-sides of 

(6.11) and (6.12) are both zero, and I immediately solve (6.11) for Sm, obtaining 

Sm = T7   S:^\     »■ (6.13) 
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By substituting this expression—for each mode m—into the steady-state equation (6.12), I 

obtain . 

By inverting (6.14) I compute n(Jiad) and, in turn, Sm(Jiad) via (6.13). Finally, I convert 

the modal photon densities inside the cavity to the total optical power Pout emitted from 

the cavity by computing 

Pout = Trr2 T 5m( Jrad)^;ro-aLmilTOr), (6-15) 
m 

where r is the cavity radius. (I include emission out of both the top and bottom mirrors.) 

To relate the laser current I to the current density Jrad, I consider the best-case scenario, 

ignoring carrier leakage, nonradiative recombination, and current spreading, and write 

I = Trr2 Jrad. (6.16) 

By combining (6.15) and (6.16), I plot the light (Pout) verses current (I) for a variety of 

cavity radii in Figure 6.6. 

My calculated light verses current curves give good agreement with measured thresh- 

olds. The measured threshold current in a 2 //m square aperture VCSEL fabricated from 

this layer structure is 91 //A [33]. My results underestimate this number by roughly a factor 

of three. My "best case" analysis is most likely to blame for this disparity; I may also have 

underestimated the free-carrier absorption losses. Note that the curvature near threshold 

becomes more pronounced as the radius decreases, indicating that a greater fraction of spon- 

taneous emission is coupled into the lasing mode. Likewise, the external quantum efficiency 

decreases sharply for the smallest devices, indicating that much of the optical power is lost 

to diffraction. 

By evaluating the fraction of the total emission that enters the lasing mode at "threshold"- 

which can be ambiguous [9]—I compute the spontaneous emission factor ß as 
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Figure 6.6     Output power (from both mirrors) verses current for various device radii. 

6-13 



D(lasmg)/        x 

a = i^P ™. (6.17) 
P -    „(TOT),        x * Vu-Xl; 

-Rsp .'{nth) 

In Figure 6.7 I plot ß as a function of cavity radius. Note that even though ß increases 

significantly as the cavity radius shrinks from 4 ^m to 1.5 ^m, it still does not approach 

unity even for r = 1.5 /mi. The reason for this is that there is always significant coupling 

to the two-dimensional "parasitic" continuum of photons radiating out through the DBR 

layers. The only way to eliminate this coupling would be to fabricate a completely separable 

structure with very high transverse confinement, such as the design discussed in Section 5.3. 

Then the coupling to the two-dimensional modes would be eliminated, and ß « | operation 

could become possible. (If the fundamental mode is degenerate, as is usually the case, then 

\ is an upper bound for ß.) 
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VII.   Conclusions and Recommendations 

7.1    Review of Present Work 

The first vertical cavity surface emitting laser was reported in 1979 [71]. Since then, 

work has increased exponentially [17], with whole conference sessions and journal special 

editions dedicated to these devices. Much of the appeal of these devices over their in-plane 

counterparts results from their radically different, and in several respects improved, operating 

characteristics, better suiting them to many applications. This fact has only recently been 

recognized by the commercial community, which is just now adopting VCSELs for products 

such as print-heads and local communication fiber sources. 

Despite their potential, these devices have not yet been optimized, and the ideal device 

has not yet been designed, let alone built. In fact, the VCSEL fabrication technology is just 

now maturing to the point where a discussion on ideal device design is reasonable. The 

latest (and perhaps last?) major advancement occurred when the University of Texas [33] 

researchers integrated an oxide aperture layer into the structure. Electrically, the oxide is 

insulating, and can provide excellent current confinement. Optically, the oxide index is lower 

than its host crystal. This index difference may provide index guiding, or perhaps optical 

scattering loss to the lasing mode. This dual nature of the oxide—providing waveguiding 

and/or scattering—has created substantial confusion with respect to VCSEL design. The 

primary goal of this thesis is to resolve this issue by understanding the physics of the oxide 

aperture within the VCSEL cavity. By constructing several optical models, I have explained 

the seemingly opposite reports on oxide effects and optimal oxide design, and have derived 

simple rules for low threshold VCSEL design. 

Mathematically, the optical problem is a complex, second order, linear, boundary value 

problem. The principal difficulty arises from the fact that the governing differential equa- 

tions are not separable in any coordinate system, greatly frustrating analytic solutions. 

Simple Fabry-Perot models, the staple of most semiconductor laser analysis, break down in 

the interesting realm of small, highly confining oxide apertures. For my first approach at 

solving this problem accurately, but economically, I employed a variational technique: the 
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weighted index method. In this technique the best separable solution is found in a vari- 

ational sense. This iterative method converges on an "eigenmode" by alternately solving 

two coupled one-dimensional integro-differential equations. The seed for the search is the 

standard Fabry-Perot solution. Limiting my analysis to azimuthally symmetric structures, 

I used this technique to solve the full vector Helmholtz equation to calculate the basic opti- 

cal lasing parameters: wavelength, confinement factor, and spatial field distribution for the 

fundamental and higher order lasing modes. 

From the full vector weighted index analysis I was able to uncover two new effects: a 

polarization dependent change in mirror reflectance—previously only noted in edge-emitting 

lasers—and a change in spectral separation of the lasing modes with oxide aperture size 

and radius. The spectral mode separation results from the dispersion in blueshift rate with 

aperture size between the various cavity modes. I confirmed the blueshift by comparison with 

experiment for two different devices. My results matched the measurements better than any 

previous calculations. The spectral separation led me to a new concept for achieving low 

threshold, single mode lasing. In my approach, a spectrally sharp gain region is coupled to 

the modes of a highly confined VCSEL. For a sufficiently small and highly confined VCSEL, 

all but the lowest order lasing mode will be blueshifted away from the gain region, and 

only a single mode will läse. Ideally, the device would be made as small as possible for 

maximum mode separation. However, such small devices suffer enormous diffraction losses, 

unless a truly separable device geometry could be fabricated. In a separable structure, the 

cavity eigenmodes would theoretically suffer no diffraction and, ignoring absorption losses, 

the ultimate quantum optical threshold limit could be achieved. In this case, the polarization 

dependent change in mirror reflectivity predicted by the weighted index method may actually 

be observed. 

Since the weighted index method is incapable of addressing diffraction on its own, I 

also employed a quasi-exact computational electromagnetic technique—the finite element 

method. My implementation of the finite element method employed new body-of-revolution, 

second-order vector edge and node elements. With the finite element method I was able 

to capture all of the VCSEL optical parameters, including the elusive diffractive loss.  By 
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applying my model to a novel high index confinement VCSEL, I was able to discover the 

fundamental mechanisms governing diffraction in apertured VCSELs. These are: 

1. The density of parasitic modes in the spectral vicinity of the eigenmode. 

2. The relative alignment between the eigenmode and parasitic mode propagation vectors. 

3. The transverse confinement of the optical mode to the core region. 

These three factors may be used to qualitatively explain both the University of Cal- 

ifornia at Santa Barbara and University of Texas group's oxide design results. The Santa 

Barbara group has suggested that thinner oxides placed at standing wave nodes are supe- 

rior [29,30]. They consider semiconductor DBR VCSELs with longer effective cavity lengths 

and relatively large parasitic mode densities, approaching the three-dimensional density of 

modes. As a result, even weak coupling to the parasitic mode continuum will yield a large 

diffractive loss, implying that thinner oxides are better. The Texas group works with a 

VCSEL with one semiconductor and one dielectric DBR [20]. In their case, the cavity and 

corresponding optical density of modes is much smaller, and the confinement aspect of their 

oxide aperture is the dominant effect. Hence, they prefer thick oxides at standing wave peaks 

near the gain region. 

The success of the parasitic mode picture in describing diffraction loss prompted me 

to try and incorporate these modes within the weighted index formalism. I successfully 

accomplished this by coupling a set of resonant parasitic modes to the eigenmode using a 

rigorous electromagnetic treatment of the coupling. In this treatment the implicit source of 

the parasitic modes is the weighted index method mode error. In the process of incorporating 

the parasitic modes, I simplified my weighted index model to a scalar solution. This resulted 

in a huge savings in complexity and computational effort with little cost in accuracy. The 

only real cost was that the scalar model forfeits the change in mirror reflectivity. But since 

this has not yet been observed, this was not much of a sacrifice. The advantages of this 

new approach are immense. The weighted index/parasitic mode calculation should provide 

the best semianalytic optical solution for apertured VCSELs, incorporating all the pertinent 
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physics within the field solution. Furthermore, it is fast and does not require a supercomputer 

to run, a distinct advantage over my finite element calculation. 

Of course, you can model optical physics until you are blue in the face, but you won't 

raise an experimentalist's eyebrow until you can compute measurable device parameters. For 

this, I combined my optical data with Loehr's gain model and a new emission model con- 

taining both a sum of discrete modes and an integral over both a two- and three-dimensional 

continuum. This approach is designed to capture the incomplete confinement effects of oxide 

apertured devices. The full laser model was applied to the University of Texas's low thresh- 

old VCSEL [33] to compute all the standard laser parameters: light verses current, lasing 

threshold, and beta factors. My results are in good qualitative agreement with their mea- 

surements, differing by no more than a factor of three. They provide a good initial validation 

of the new emission model and my new weighted index/parasitic mode computation. 

7.2   Suggestions for Future Study 

As is often the case in research, for every door you shut two more open. Indeed, staying 

focused on a specific task may be the most challenging aspect of research. I certainly found 

this to be the case, with many research avenues presenting themselves to me through the 

course of my work. Having completed my dissertation, I feel that I now have the perspective 

to see where my work fits into the general body of knowledge, and to recommend future 

studies. 

A model should pass through three distinct phases: derivation, validation, and ap- 

plication; I have completed the first phase and have just begun the second. Therefore, I 

suggest the following course of action. First, my two models should be comprehensively 

tested against one another. Before this can be accomplished, however, the finite element 

linear algebra solver must be revamped to address larger problems. Second, both models 

should be tested against experiment for threshold predictions. Along the same lines, the 

complete VCSEL model must be tested and refined to improve its overall accuracy. Third, 

the models should all be applied to optimize the VCSEL threshold. This is pretty much the 
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whole point of the work: the ultimate goal is to design a better device and take another step 

towards the "thresholdless grail." 

7-5 



Appendix A.   Variational Justification of the WIM 

The weighted index method (WIM) allows me to compute a separable, approximate solution 

to a two dimensional partial differential equation. In this appendix, I use the calculus of 

variations to demonstrate that the WIM solution represents the best separable approximation 

to the two-dimensional, azimuthally-symmetric Helmholtz equation. 

I wish to solve 

{<*+(pr(p,z)-y)}4>(P,z) = 0, (A.l) 

where V2, z denotes the Laplacian with respect to the radial and axial coordinates and er(p, z) 

is the relative permittivity. Equation (A.l) is a Sturm-Liouville differential equation [3] 

of the form Ctj) = 0 with zero-Dirichlet boundary conditions at p = oo, zero-Dirichlet 

(m ^ 0) or Neumann (m = 0) boundary conditions at p = 0, and zero-Robin (mixed 

Dirichlet/Neumann) boundary conditions at z = ±oo (radiation conditions) [7]. 

I solve (A.l) variationally by forming a functional J[V>] that, when extremized over the 

space of admissible functions tß(p, z), minimizes the Hubert space distance 

/oo     /«oo 

/       IV>(/>, Z) ~ V'exact(P) 
Z) ?P dPdz- (A-2) 

■oo Jo 

Here V'exact denotes the exact solution to (A.l) [64]. I refer to the particular function mini- 

mizing (A.2) as the best variational solution. The variation SJ[tp] is given by 

i _ #   111 11 "* {vl+(^:£r(p,z)-~ 
P2 

CO2 

<#|V^|^> + ^-(^|£r(/J,z)|V)-m2<#|/)-
2|V> = 0, (A.3) 

where the appropriately-weighted inner-product for this geometry is 

/OO        /»OO 

/   {A*B)pdpdz. (A.4) 
■oo J0 
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Integrating the first term on the second line of (A.3) by parts yields 

6m = ^(W\er(p,z)\i>)-m2(8^\p-2\i>)-(Vp,M\Vp^)=0, (A.5) 

where the surface terms drop out for bound modes.   Then J[V>] is found by bringing the 

variational operator outside the inner-products to yield 

(A.6) 

\dp 

m 
+ —\^\2}pdpdz 

Inow search for the optimal function 0 that extremizes J,i.e. that gives 6J[V>] = 0. This 

procedure yields differential equations of constraint—the Euler equations—on i\>. If I allowed 

i\) to range over the complete space of complex two dimensional functions, the constraint 

equation would be (A.l) and the whole exercise would be useless. However, by restricting 

the functional domain of ip I can generate different constraint equations. In particular, I can 

find the best separable solution by taking the variation of (A.6) while restricting ^ to the 

space of all separable functions 

i>(p,z) = F(p)G(z). (A.7) 

To generate constraint equations for F and G, I take the total variation A$[F, G}. This 

is given by [23] 

AJ[F, Gf\ = S[F+f,G + g]- J[F, G], (A.8) 

where / and g are incremental deviations from F and G. The first variation (£J) is the 

principal part of the total variation given above. Substituting F + f and G + g appropriately 

into (A.6) and then taking the principal part (the part involving single terms of / and g to 

the first power) yields 

8J[F, G)   =   |_°° jf { \^er(p, z) - ^j {F]G
2
 + F2Gg) - (A.9) 

(>/'G2 + F2G'~g< + Ff(G')2 + {F'fGg) } pdpdz, 
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where the prime denotes differentiation with respect to the argument. Integrating by parts 

and applying the appropriate Dirichlet and Neumann boundary conditions on F(p) and 

G(z), I remove the derivatives from / and g to yield 

6$[F,G} = 

LYM^-f 
+ an u>2    .      .      m2 

FG2 - F{G')2 + -{pF')' G2\ dz 

F2G-(F')2G + F2G"\pdp 

(A.10) 

fpdp 

gdz. 

Since either f(p) or g(z) may equal zero, this implies that both the first and second terms 

must independently equal zero to extremize J[V>]. Thus I generate from (A.ll) the two 

independent variational equations: 

\VLer{Plz)~  G2{z)-{G>{z))2\dz+UpF')'        G2(z)dz = 0,      (A.ll) 
oolLC Pi ) P J-oo 

and 
G[{\^z)- 

m 
F2 - {F'f \ pdp + G" /    F2pdp = 0 

Jo 

Employing the axial and radial inner-products 

/CO 

\G\2dz 
■oo 

(A.12) 

(A.13) 

and 

Jo 
\F\2pdp, 

I can rewrite (A.ll) and (A.12) as 

and 

1 (nF,y ,  ((u>2/c2)(G\er\G)-(G>\G')     m2\ 

G„ + (^
2lc2){F\er\F)-m2{F\p-2\F)-{F'\F'Y] Q^Q 

(F\F) 

(A.14) 

(A.15) 

(A.16) 
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Introducing further notation and applying the product rule to (A. 15), I obtain the weighted 

index equations 
1„„ *  .   A*   r~   ,     ™r 

and 

where, 

and 

F"(p) + -pF\P) + [kl„[G,p] - yj F(p) = 0 (A.17) 

G"(z) + ß2
eff[F,z]G(z) = 0, (A.18) 

fc2  lG p] = W*)(G\er\G) + (G\G») 

*   tj?   ]_("2/c>){F\er\F) + (F\F») + {F\p-*\F')-m>(F\p->\F) 
Peff[*iZ\= (F\F) ' 

These variational constraint equations are exactly the same as (2.14) and (2.15) from Section 

2.2. Therefore, the solution of these equations represents the best separable approximation 

to (A.l). 
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Appendix B.   Transfer Matrix Generalization of Fabry-Perot Laser Theory 

In this appendix, I show that the lasing conditions generated via transfer matrix techniques 

are in fact a generalization of the classic Fabry-Perot lasing conditions. Specifically, I show 

that for the simple plane-wave case the transfer matrix lasing conditions reduce to the Fabry- 

Perot conditions. 

In classical Fabry-Perot laser theory the threshold gain and lasing mode wavelengths are 

given by a condition on the round-trip field amplitude and phase. In order for a lasing mode 

to be supported the round-trip change in amplitude must be > 1. This is the gain/amplitude 

condition 

R1Rie
2LTt"a* = 1, (B.l) 

or 

r'°^ = 2lln(lk' a (mirror) (B.2) 

Here Ttot is the total confinement factor, L is the cavity length, a(milTOr) is the mirror loss, Ri 

and R2 are the mirror power reflectivities, and I have ignored any losses within the cavity. In 

order for a mode to be supported the round-trip change in phase must be an integer multiple 

of 2TT or 
or 

2kL = mlit =► A = —, (B.3) 

where m is an integer. These conditions are illustrated in Figure B.l. 

In transfer matrix theory the fields on either side of the VCSEL are related to one 

another by a 2 x 2 transfer matrix. In Figure B.2, the traveling wave amplitudes, E1+ and 

Ei-, in the substrate region at the substrate-to-VCSEL boundary are related to the traveling 

wave amplitudes, E3+ and E3-, in free-space at the VCSEL-to-air boundary through a 

transfer matrix, 

E3+ 

Ez- ra2i   m22 

Ei+ 
(B.4) 

A lasing condition is generated by requiring no incident radiation on either end of the 
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1 

exp {TtotgthL) 

R2 exp (Ttotgth2L) 

Ä1Ä2exp(rtot^^2L) 

R l 

R2 exp (rtotgthL) 

R? 

Figure B.l     Illustration of classical laser amplitude and phase conditions generated via 
Fabry-Perot theory. 
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VCSEL, i.e. E3. = Ei+ = 0. Hence, for a non-trivial solution to (B.4) I require ra22 = 0, 

where m22 is complex, implying Re(m22) = Im(ra22) = 0 (two conditions). 

Based on the effective material parameters shown in Figure B.2, 

m22 = f^ (r32r21 + ei2**), (B.5) 
t32t 21 

where t32, t2i and r32, r2i are the effective Fresnel transmission and reflection coefficients and 

(f)2 = ßeff L2 is the effective phase change for a single pass through the VCSEL of effective 

length L2 with effective propagation constant ßeff . For realistic VCSELs, the first term in 

(B.5), f-72-, can not equal zero or infinity. Hence, the lasing condition reduces to 
*32*21 

„j'20. = -r32r21 = r23r21. (B.6) 

The Fabry-Perot amplitude condition can be recovered by taking the absolute value 

squared of (B.6), 

e~4^L2 = \r23r21\
2 = R23R21, (B.7) 

where Kth is the effective threshold material gain, and i?2i and R23 are the effective mirror 

power reflectance coefficients for a field impinging from inside the VCSEL. Recognizing that 

Ttotgth = 2^Kth, (B.7) may be rewritten as 

rtoV = ^-ln(^V-), (B.8) 
ZL2       V-K21-K23/ 

which is equivalent to (B.2) with the substitution of the appropriate effective parameters. 

The Fabry-Perot phase condition is found by equating the phase terms on either side 

of (B.6). Expanding each side of the equation yields 

oZ ei2*n2L2 = oZ (n2 + iKth-n3\ ^n2 + JKth-ni\ ^ 

\n2 + iKth + n3J \n2 + iKth + nij ' 

where °Z denotes the complex phase angle. For realistic VCSEL structures Kth ~ 0.01 while 

n\ — n2 > 0.5 and n2 — n3 > 1.0, hence I may assume the phase of the right hand side of 
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(B.9) is approximately zero. Thus, 

»W A 21/2 2-n2L2 = 2m7T =* A = —, (B.10) 
c m 

which is equivalent to (B.3) with the substitution of the effective cavity length L2 for L. 
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Substrate 
Ei. 

V2 = n2 + ^ 

VCSEL 

E: 3+ 

i?3_ 
■<— 

773 = n3 

Air 

Figure B.2     Illustration of transfer matrix solution to the plane-wave VCSEL problem. 
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Appendix C.   Vector Basis Functions for m=l Modes 

In this appendix, I review the vector basis functions employed in my finite element model. 

Based on the literature, I choose to span the mesh using second order node, edge, and 

face element functions [25,59]. These functions have been shown to be a good compromise 

between mesh density and function order, roughly minimizing the total number of unknowns 

required to obtain a given solution accuracy. For each triangle in the mesh there are 14 

basis functions: 6 node based (ti0 - N5), 6 edge based (W0 - W5J, and two face based 

(w6, Wr) , as illustrated in Figure C.l [35,59]. To define the 14 element functions, I 

use simplex (or barycentric) coordinates, defined over the triangular element via the affine 

transformation [13,68], 

(C.l) 

Here (p0, z0), (p1,z1), and (/92, z2) are the three corners of the triangle, and (0, Ci,and £2 are 

the simplex coordinates. Based on the £,-, the element vector functions are 

1 1   1   1 ' Co" 

p — PO     Pi     P2 Ci 

z Z0    Zi     z2 .k. 

No =   (2Co-l)Co(J + p), 

tii =   (2C1-l)Ci(J + p), 

ti2 =   (2C2-l)C2(? + p), 

ti3 =   4COCI(? + P), 

ti4 =   4CiC2(J + i&), 

ti5 =   4CoCa(> + p), 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

(C.7) 

C-l 



m 
Figure C.l     Numbering convention of the six node, six edge, and two face based element 

functions. 
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Wo   = p(1VT(2=
Pj±{b2p + c2z}, 

Wx     = pC2^r(l = ^{blP + C1z}, 

W2   = pC2VTCo=^{boP + coz}, 

W3   = pC0VT(2 = ^{b2p + c2z}, 

W4   = pCoVrCi = ^W + M}, 

W5   = />CiVTCo = ^{^ + c0z}, 

We   = /o4C1(C2VTCo-CoVTC2) 

= ^{C2(öoP + col)-Co(&2P + c2f)}, 

W7   = p4C2(C0VTCi-CiVTCo) 

{Co (*iP + ci*) - Ci (&ö£ + co^)} • 

(C.8) 

(C.9) 

(CIO) 

(dl) 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

MCa 

Here 

Vr = TpP+TzZ> 

the fej- and c; are given by the inverse affine transformation, 

(C.16) 

Co 

Ci 

C2 

A 

ÖO    &o    Co 1 

ai   61   Ci P 

02    b2    c2 2 

(C.17) 

and A is twice the area of the triangle, 

A = ^Pi (*»"i _ *«) = 5^ ^'6i = 5Z A'« C« 

j=0 «=0 «=0 

(C.18) 

(i, il,and i2 are modulo 3). These functions are illustrated in Figures C.2 and C.3. These 
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functions have three important properties that make them ideal for electromagnetic calcu- 

lation in cylindrical coordinates. 

First, when filling the S and T matrices, functions based on the same node or edge of 

neighboring elements (not necessarily with the same element function number N0 — W7) are 

assigned the same coefficient £;. As a result, the node and edge functions naturally enforce 

tangential field continuity (as illustrated in Figure C.4) without necessarily forcing normal 

field continuity, due to the two face functions. 

Second, my element functions are modified from the more standard form [35] to force 

field regularity at p = 0 (the axis condition). The lasing modes I seek are analogous to the 

(m = 1) LPoi fiber modes [58], where the azimuthal field dependence is sin(^)/cos(<£). The 

proper axis condition for the m = 1 modes is [74] 

and 

Km^ = ^, (C.19) 
p-fO 

lim£z = 0. (C.20) 
p-0 

This condition is included in (C.2) - (C.15) by weighting the "standard" [35] edge and face 

functions by p, and including the node functions as part of the p field expansion. Note that 

I may find m = 0 and m > 1 modes using a basis similar to (C.2) - (C.15), altered to 

accommodate the proper axis condition for these modes. 

Third and least obvious, these elements properly model the null space of the curl 

operator, which has been shown to eliminate the occurrence of spurious solutions (modes) 

[40,72]. 
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M o Ni m 

m NA N5 

w*- 
—* —* 

Figure C.2     Illustration of the six node based functions (N0 — N5) for a typical element; 
the functions are overlayed on a triangle outline of the element. 
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w, o Wi Wo 

W3 W4 w5 

w6 w7 

Figure C.3 Illustration of the six edge based (Wo — W5) and the two face based (W6 - W7) 
functions for a typical element; the functions are overlayed on a triangle outline 
of the element. These illustrations do not include the p weighting present in 
(C.8) - (C.15). 
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Element B, W0 

Element A, W1 

Figure C.4 Illustration of the natural tangential continuity between mesh elements. By 
assigning the same coefficient X{ to W\ of element A and W0 of element B, the 
vector sum of the two functions is tangential to their common edge. 
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Appendix D.   Absorbing Layer Design 

In this appendix, I give the details of a new absorbing layer design. I use a two step process 

to optimize b(p), the absorbing layer loss function: First, I obtain a rough estimate using 

an asymptotic description of the fields and reflections. Second, I fine-tune the layer by 

minimizing the exact reflection values as obtained by a rigorous transfer matrix calculation. 

In both steps I model the radial AL (tts) as a set of discrete cylinders, as shown in Figure 

D.l, approximating a(p) as an = a((pn + /0n_i)/2), where AL cylinder n is defined by 

[Pn-nPn]- To simplify further, I ignore the z dependence of the material parameters and 

perform my analysis using a single set of (er, pr), the rough mean material values for the 

VCSEL. This should be sufficient, since I am not concerned about interfacial reflections 

between the various axial layers, and desire only to suppress nonphysical radial reflections. I 

choose b(p) to minimize the reflection of cylindrical waves incident on the radial boundaries. 

These waves are constructed from the z and <f) field components given in each region 

(cylinder) by 

H„n{p,z)   =    {AlEH^\knp)^BrH^\knP))e^\ (D.l) 

HUP,*) = Z^9fi^ (°-3) 
luJEQEr 

- {AlUH?\knP) + B™B?\KP)) e»*' 
iup,0andHz m ., 

k, n 
± (A™H?\knP) + B^H^Kp)) e#.; 

where üQ = 1 (60 = 0) in fly and I have assumed nonmagnetic materials (p,r = 1). The 

coefficients A^01 and 2?P
O1
 are the magnitude for the outward and inward propagating waves, 

and pol = TE or TM labels the (uncoupled) polarizations of the m = 0 modes. It has been 

shown [45] that absorbing layers that perform well for these m = 0 modes will also work well 

for the m = 1 modes that I am interested in. 
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I can describe cylindrical waves incident at an angle 8—measured from the normal to 

Ts in the p — z plane («rs)—*° *ne radial interface by writing the radial (kn) and axial (ßn) 

propagation constants as 

kn   =   k0r]an cos (8), (D.5) 

ßn   =   k0nanSm(8). (D.6) 

This choice ensures that kn and ßn satisfy the dispersion relation 

u2fj,0s0sra
2

n = k%era
2

n = k% + ß2
n, (D.7) 

in each region, where the (generally complex) index of refraction is 

n = V^r- (D.8) 

D.l    Initial Design: Theory of Small Reflections 

For the initial AL design analysis I employ the theory of small reflections [60], approx- 

imating the total Fresnel reflection for a cylindrical wave incident on the AL at p0 as 

r « | r0| + | rj | ti + | r2| h,2 + ... + | rNcyl | tlt2 Ncyl. (D.9) 

Here Ncyi is the total number of cylinders in the AL, rn is the Fresnel reflection coefficient at 

pn, and tit2,...,n gives the attenuation due to the propagation from p0 to pn and back. I use | rn\ 

rather than rn in (D.9) to minimize the interference effects, since I am after a broadband 

AL design optimized for all angles of incidence. I estimate rn using the asymptotic form 

for cylindrical waves in each region n. Due to the form of (4.16) and (D.l) - (D.4), the 

magnitude of the TE and TM Fresnel reflection coefficients are the same, hence I need only 
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Po Pi P2 PS 
Figure D.l     Illustration of the geometry used to design the radial AL. Us is broken into 

discrete cylinders, each with a constant AL parameter an = a((pn + pn_1)/2). 
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perform the analysis once. Taking the asymptotic form for the Hankel functions, 

e,±iknP 
limfi (l)/(2) 

/9-+00 
(Kp) 

\jK~p 
(D.10) 

(+ applies to (1) and - applies to (2)) and enforcing tangential field continuity, I find 

cos(6n+1) - cos(9n) 
cos(0n+i) + cos(0n) 

(D.ll) 

for n = 0 to Ncyi - 1. 0„ and 0n+i are the (complex) propagation angles with respect to 

nrs in regions n and n + 1, respectively. I set | rNcyl\ = 1 to enforce the perfect conductor 

boundary condition at the mesh edge (r). Keeping only the first (lowest order) term in the 

derivatives of (D.10), I approximate 

tl,2 n — ^1^2 • • -tni (D.12) 

where 

In — 6 
—I&kri'n (D.13) 

and kn and /„ = pn — pn_x are the radial propagation constant and cylinder thickness in 

region n. Substituting (D.ll) - (D.13) into (D.9) and taking the magnitude yields, 

r\ « 
Ncyi n 

,     z2K^tft 

»1=0 n=0 

(D.14) 

which I may solve for a given a(p) to find \r (0i)\, the magnitude of the total Fresnel reflection 

for a general (e.g., includes axial propagation exp(ißz)) cylindrical wave incident on the AL 

at angle 0;. Note that (D.14) is equivalent to the result obtained via a plane wave, planar 

interface analysis, and may therefore be directly applied to the axial AL design (ttr and 

OB), in addition to the radial design (us). 
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D.2   Final Design: Transfer Matrix Solution 

To finalize my radial AL design I use a 2 x 2 transfer matrix solution for the TE or TM 

fields. Enforcing continuity of (D.l) and (D.4), or (D.2) and (D.3) at each radial interface 

/>n> J have 

Ln 

An 
= Rn+1 

An+l 

Bn Bn+i 
(D.15) 

where 

Ln = 
H$\knPn) H^\knPn) 

(D.16) 

and 

Rn+l = (D.17) 
H^(kn+1pn) H^(kn+lPn) 

I have dropped the pol=TE/TM superscript since (D.15) holds for both polarizations. At 

the mesh boundary (r), I enforce E^ = 0 which relates the coefficients in the outermost AL 

cylinder by 

4 cyl -BJ Nc, 
Wik^puj 

(D.18) 
H\ \kNcylPNcyl) 

For convenience, I choose ANcyl = -H^\kNcylpNcyl) and BNcyl = H[2\kNcylpNcJ. Beginning 

in the outer AL cylinder and working inward via repeatedly applying (D.15), I calculate A0 

and BQ. The total Fresnel reflection coefficient for an outward propagating wave incident on 

the AL is given by 

r = Bo (D.19) 

D.3   Results for Structures Analyzed 

To design my AL, I ran the analysis outlined in Sections D.l and D.2 with VCSEL 

material parameters er = 9 and fir = 1. I assumed a polynomial form for the AL loss 

function, 
order 

b(X) = Y, w- (D-2°) 
i-l 
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Here order refers to the polynomial order, 6; are the polynomial coefficients, and 

P-PTS 
X = 

Pv ~ PVs 
(D.21) 

is the normalized radial coordinate ranging from 0 at Ts, the VCSEL-AL interface, to 1 at 

T, the problem/mesh boundary. Through a numerical optimization, I found that a second 

order polynomial with coefficients, 

k   =   0.1178, (D.22) 

b2   =   0.7433, (D.23) 

worked best for b(x). In addition, I found an AL thickness of 1.5A (at A = 870 nm) was 

superior, with little change in the AL properties for greater thicknesses. The reflection 

coefficient (calculated with the transfer matrix approach) verses angle is given in Figure D.2. 

The key point to recognize from Figure D.2 is the intensity reflection, RdB = 201og10(| r\)< 

-50 dB for 9i < 40°, indicating a good "wide-angle" absorber design. 

To provide a more practical test of my AL design, I analyzed the 1A-1THIN VCSEL 

(introduced in Section 4.4), tracking the lasing mode (defined as the lowest loss mode, 

e.g., the mode with the smallest Im(£)) eigenvalue as a function of pTs - pox, which is 

the separation between the VCSEL-AL boundary and the oxide aperture. I tested two 

different oxide aperture radii, 0.5 ^m and 1.0 /im, using my 1.5A (= 0.435//m), second order 

polynomial AL design. The resulting real and imaginary parts of the eigenvalue are shown in 

Figures D.3 and D.4, respectively. Clearly, the eigenvalues converge for pFs - pox > 0.9 pm 

(corresponding to « 3A), denoting the minimum allowable separation between the oxide 

aperture and Ts- It is interesting to note that for the 1.0 //m oxide aperture, the variation 

in the eigenvalue from pox = 1.2 pm. to 2.0 pm corresponds to a variation in the resonant 

wavelength of less than two angstroms, implying that the AL works well even when placed 

very close to the aperture. No analogous test was performed on the axial AL design; I assume 

that, based on the good results of the radial AL design and the high reflectance of the oxide 

DBRs, the optimized radial AL design should work for the axial AL as well.  To perform 
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0 15 30 45 60 
Angle of Incidence 

75 90 

Figure D.2 Calculated intensity reflection R = \r\2 of the radial absorbing layer (AL) 
using the rigorous transfer matrix approach. The calculation is based on a 
1.5A thick AL at 870 nm, positioned with pTs = 2.0 /an. Thirty layers were 
used to discretize the AL loss function. Inset is the intensity reflection in 
decibels RdB = 20log10(|r|). 
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the lasing mode analysis of Chapter IV, I used pTs = 2.0 jwn and varied the oxide aperture 

radius (pox) from 0.4 //m to 1.0 /mi. 
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Figure D.3 Real part of the eigenvalue £ vs separation between oxide radius (pox) and 
radial AL radius (prs) for the 1A-1THIN structure for two different oxide 
radii, 0.5 //m and 1.0 /mi. 
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Figure D.4 Imaginary part of the eigenvalue £ vs separation between oxide radius (pox) 
and radial AL radius (prs) for the 1A-1THIN structure for two different oxide 
radii, 0.5 /mi and 1.0 /mi. 
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